期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Bioinformatics Analysis of IPIs in Five Northern Medicinal Plants
1
作者 郝爱平 齐虹凌 +1 位作者 国会艳 魏继承 《Agricultural Science & Technology》 CAS 2016年第2期279-284,288,共7页
This study analyzed and predicted following aspects of isopentenyl py- rophosphate isomerases (IPIs) of five north medicinal plants using bioinformatics methods and tools: physical and chemical properties, hydropho... This study analyzed and predicted following aspects of isopentenyl py- rophosphate isomerases (IPIs) of five north medicinal plants using bioinformatics methods and tools: physical and chemical properties, hydrophobicity/hydrophilicity, trans-membrane domain, secondary structure, subcellular localization and so on. The results showed that: there was no notable difference among the physical and chem- ical properties of IPIs of the five north medicinal plants; the IPIs were mainly hy- drophilic; the IPIs were mainly located in chloroplasts by subcellular localization; serine phosphorylation sites were the most; the secondary structures mainly consist- ed of c^-helixes and random coils; no signal peptide existed, indicating that the pro- tein IPI was non-secreted protein; no trans-membrane domain existed; and one functional domain was shown, Le., Nudix Hydrolase Superfamily. This study is of great significance to research on IPI gene functions, deep research on north medic- inal plants, improvement of efficacy of north medicinal plants and rational develop- ment and utilization of medicinal plant resources. 展开更多
关键词 plant terpenoid biosynthesis Isopentenyl pyrophosphate isomerase (IPI) BIOINFORMATICS
下载PDF
Transcriptional regulation of oil biosynthesis inseed plants: Current understanding, applications,and perspectives 被引量:4
2
作者 Yuzhou Yang Que Kong +5 位作者 Audrey R.Q.Lim Shaoping Lu Hu Zhao Liang Guo Ling Yuan Wei Ma 《Plant Communications》 SCIE 2022年第5期19-37,共19页
Plants produce and accumulate triacylglycerol(TAG)in their seeds as an energy reservoir to support the processes of seed germination and seedling development.Plant seed oils are vital not only for the human diet but a... Plants produce and accumulate triacylglycerol(TAG)in their seeds as an energy reservoir to support the processes of seed germination and seedling development.Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use.TAG biosynthesis consists of two major steps:de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum.The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis.We summarize recent progress in understanding the regulatory mechanisms of wellcharacterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis.The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors,which in turn fine-tune the spatiotemporal regulation of the pathway genes. 展开更多
关键词 plant oil biosynthesis oil accumulation seed development environmental and developmental signals transcription factor transcriptional regulation
原文传递
Lignin Biosynthesis Studies in Plant Tissue Cultures 被引量:9
3
作者 Anna Krknen Sanna Koutaniemi 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2010年第2期176-185,共10页
Lignin, a phenolic polymer abundant in cell walls of certain cell types, has given challenges to scientists studying its structure or biosynthesis. In plants lignified tissues are distributed between other, non-lignif... Lignin, a phenolic polymer abundant in cell walls of certain cell types, has given challenges to scientists studying its structure or biosynthesis. In plants lignified tissues are distributed between other, non-lignified tissues, Characterization of native lignin in the cell wall has been difficult due to the highly cross-linked nature of the wall components. Model systems, like plant tissue cultures with tracheary element differentiation or extracellular lignin formation, have provided useful information related to lignin structure and several aspects of lignin formation. For example, many enzyme activities in the phenylpropanoid pathway have been first identified in tissue cultures. This review focuses on studies where the use of plant tissue cultures has been advantageous in structural and biosynthesis studies of lignin, and discusses the validity of tissue cultures as models for lignin biosynthesis. 展开更多
关键词 CELL Lignin biosynthesis Studies in plant Tissue Cultures
原文传递
What Do We Really Know about Cellulose Biosynthesis in Higher Plants? 被引量:14
4
作者 Gea Guerriero Johanna Fugelstad Vincent Bulone 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2010年第2期161-175,共15页
Cellulose biosynthesis is one of the most important biochemical processes in plant biology. Despite the considerable progress made during the last decade, numerous fundamental questions related to this key process in ... Cellulose biosynthesis is one of the most important biochemical processes in plant biology. Despite the considerable progress made during the last decade, numerous fundamental questions related to this key process in plant development are outstanding. Numerous models have been proposed through the years to explain the detailed molecular events of cellulose biosynthesis. Almost all models integrate solid experimental data with hypotheses on several of the steps involved in the process. Speculative models are most useful to stimulate further research investigations and bring new exciting ideas to the field. However, it is important to keep their hypothetical nature in mind and be aware of the risk that some undemonstrated hypotheses may progressively become admitted. In this review, we discuss the different steps required for cellulose formation and crystallization, and highlight the most important specific aspects that are supported by solid experimental data. 展开更多
关键词 cell What Do We Really Know about Cellulose biosynthesis in Higher plants
原文传递
Production of Active Compounds in Medicinal Plants:From Plant Tissue Culture to Biosynthesis 被引量:7
5
作者 Juan Wang Jian-li Li +4 位作者 Jing Li Jin-xin Li Shu-jie Liu Lu-qi Huang Wen-yuan Gao 《Chinese Herbal Medicines》 CAS 2017年第2期115-125,共11页
Over past decades plant tissue culture has emerged as an alternative of whole plant cultivation in the production of valuable secondary metabolites.Adventitious roots culture of Panax ginseng and Echinacea purpure has... Over past decades plant tissue culture has emerged as an alternative of whole plant cultivation in the production of valuable secondary metabolites.Adventitious roots culture of Panax ginseng and Echinacea purpure has reached the scale of 1-10 kL.Some molecular biological techniques,such as transgenic technology and genetic stability are increasingly used in the studies on plant tissue cultures.The studies on elicitors have deepened into the induction mechanism,including signal molecules,functional genes,and so on.More and more biological elicitors,such as A.niger and yeast are used to increase the active compounds in plant tissue cultures.We also discussed the application of synthetic biology in the studies on biosynthesis of artemisinin,paclitaxel,and tanshinon.The studies on active ingredients biosynthesis of medicinal plants provide unprecedented possibilities to achieve mass production of active ingredients.Plant tissue cultures can not only produce active ingredients but also as experimental materials for biosynthesis.In order to improve the contents of active compounds in medicinal plants,following aspects could be carried out gene interference or gene silencing,gene overexpression,combination with chemical synthesis,application of elicitors,and site-directed mutagenesis of the key enzymes. 展开更多
关键词 biosynthesis functional gene medicinal plant tissue culture secondary metabolites
原文传递
Plant Tissue Culture and Biosynthesis Provide a Fast Way to Produce Active Constituents of Traditional Chinese Medicines 被引量:1
6
作者 Chang-xiao Liu 《Chinese Herbal Medicines》 CAS 2017年第2期99-100,共2页
The plant kingdom has provided literally thousands of natural products with widely diverse chemical structures and a vast array of biological activities.Many of them have seen subsequent application in discovery of ne... The plant kingdom has provided literally thousands of natural products with widely diverse chemical structures and a vast array of biological activities.Many of them have seen subsequent application in discovery of new druids and the pharmaceutical industry and clinical therapeutic application. 展开更多
关键词 OVER plant Tissue Culture and biosynthesis Provide a Fast Way to Produce Active Constituents of Traditional Chinese Medicines
原文传递
Chromatin-remodeling factor OsINO80 is involved in regulation of gibberellin biosynthesis and is crucial for rice plant growth and development 被引量:7
7
作者 Chao Li Yuhao Liu +2 位作者 Wen-Hui Shen Yu Yu Aiwu Dong 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第2期144-159,共16页
The phytohormone gibberellin(GA) plays essential roles in plant growth and development. Here,we report that OsINO80, a conserved ATP-dependent chromatin-remodeling factor in rice(Oryza sativa), functions in both G... The phytohormone gibberellin(GA) plays essential roles in plant growth and development. Here,we report that OsINO80, a conserved ATP-dependent chromatin-remodeling factor in rice(Oryza sativa), functions in both GA biosynthesis and diverse biological processes. OsINO80-knockdown mutants, derived from either T-DNA insertion or RNA interference, display typical GA-deficient phenotypes, including dwarfism, reduced cell length, late flowering, retarded seed germination and impaired reproductive development. Consistently, transcriptome analyses reveal that OsINO80 knockdown results in downregulation by more than two-fold of over 1,000 genes, including the GA biosynthesis genes CPS_1 and GA_3ox_2, and the dwarf phenotype of OsINO80-knockdown mutants can be rescued by the application of exogenous GA3. Chromatin immunoprecipitation(Ch IP) experiments show that OsINO80 directly binds to the chromatin of CPS1 and GA_3ox_2 loci. Biochemical assays establish that OsINO80 specially interacts with histone variant H_2A.Z and the H_2A.Z enrichments at CPS_1 and GA_3ox_2 are decreased in OsINO80-knockdown mutants. Thus, our study identified a rice chromatin-remodeling factor,OsINO80, and demonstrated that OsINO80 is involved in regulation of the GA biosynthesis pathway and plays critical functions for many aspects of rice plant growth and development. 展开更多
关键词 GA Chromatin-remodeling factor OsINO80 is involved in regulation of gibberellin biosynthesis and is crucial for rice plant growth and development Figure
原文传递
The CELLULOSE-SYNTHASE LIKE C (CSLC) Family of Barley Includes Members that Are Integral Membrane Proteins Targeted to the Plasma Membrane 被引量:2
8
作者 Fenny M. Dwivany Dina Yulia +6 位作者 Rachel A, Burton Neil J. Shirley Sarah M. Wilson Geoffrey B, Fincher Antony Bacic Ed Newbigin Monika S. Doblin 《Molecular Plant》 SCIE CAS CSCD 2009年第5期1025-1039,共15页
The CELLULOSE SYNTHASE-LIKE C (CSLC) family is an ancient lineage within the CELLULOSE SYNTHASE/CELLULOSE SYNTHASE-LIKE (CESA/CSL) polysaccharide synthase superfamily that is thought to have arisen before the dive... The CELLULOSE SYNTHASE-LIKE C (CSLC) family is an ancient lineage within the CELLULOSE SYNTHASE/CELLULOSE SYNTHASE-LIKE (CESA/CSL) polysaccharide synthase superfamily that is thought to have arisen before the divergence of mosses and vascular plants. As studies in the flowering plant Arabidopsis have suggested synthesis of the (1,4)-β-glucan backbone of xyloglucan (XyG), a wall polysaccharide that tethers adjacent cellulose microfibrils to each other, as a probable function for the CSLCs, CSLC function was investigated in barley (Hordeum vulgate L.), a species with low amounts of XyG in its walls. Four barley CSLCgenes were identified (designated HvCSLC1-4). Phylogenetic analysis reveals three well supported clades of CSLCs in flowering plants, with barley having representatives in two of these clades. The four barley CSLCs were expressed in various tissues, with in situ PCR detecting transcripts in all cell types of the coleoptile and root, including cells with primary and secondary cell walls. Co-expression analysis showed that HvCSLC3 was coordinately expressed with putative XyG xylosyltransferase genes. Both immuno-EM and membrane fractionation showed that HvCSLC2 was located in the plasma membrane of barley suspension-cultured cells and was not in internal membranes such as endoplasmic reticulum or Golgi apparatus. Based on our current knowledge of the sub-cellular locations of polysaccharide synthesis, we conclude that the CSLC family probably contains more than one type of polysaccharide synthase. 展开更多
关键词 Cellulose synthase-like family C plant cell wall biosynthesis xyloglucan CELLULOSE GLYCOSYLTRANSFERASE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部