期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
Topography and soil content contribute to plant community composition and structure in subtropical evergreen-deciduous broadleaved mixed forests 被引量:3
1
作者 Qichi Yang Hehe Zhang +4 位作者 Lihui Wang Feng Ling Zhengxiang Wang Tingting Li Jinliang Huang 《Plant Diversity》 CSCD 2021年第4期264-274,共11页
Topography and soil factors are known to play crucial roles in the species composition of plant communities in subtropical evergreen-deciduous broadleaved mixed forests.In this study,we used a systematic quantitative ... Topography and soil factors are known to play crucial roles in the species composition of plant communities in subtropical evergreen-deciduous broadleaved mixed forests.In this study,we used a systematic quantitative approach to classify plant community types in the subtropical forests of Hubei Province(central China),and then quantified the relative contribution of drivers responsible for variation in species composition and diversity.We classified the subtropical forests in the study area into 12 community types.Of these,species diversity indices of three communities were significantly higher than those of others.In each community type,species richness,abundance,basal area and importance values of evergreen and deciduous species were different.In most community types,deciduous species richness was higher than that of evergreen species.Linear regression analysis showed that the dominant factors that affect species composition in each community type are elevation,slope,aspect,soil nitrogen content,and soil phosphorus content.Furthermore,structural equation modeling analysis showed that the majority of variance in species composition of plant communities can be explained by elevation,aspect,soil water content,litterfall,total nitrogen,and total phosphorus.Thus,the major factors that affect evergreen and deciduous species distribution across the 12 community types in subtropical evergreendeciduous broadleaved mixed forests include elevation,slope and aspect,soil total nitrogen content,soil total phosphorus content,soil available nitrogen content and soil available phosphorus content. 展开更多
关键词 Environmental factors plant community Two-way indicator species analysis Detrended correspondence analysis Evergreen-deciduous broadleaved mixed forests Northwestern of Hubei
下载PDF
Responses of plant community to the linkages in plant-soil C:N:P stoichiometry during secondary succession of abandoned farmlands,China 被引量:5
2
作者 LIU Weichao FU Shuyue +6 位作者 YAN Shengji REN Chengjie WU Shaojun DENG Jian LI Boyong HAN Xinhui YANG Gaihe 《Journal of Arid Land》 SCIE CSCD 2020年第2期215-226,共12页
Succession is one of the central themes of ecology;however,the relationship between aboveground plant communities and underground soils during secondary succession remains unclear.In this study,we investigated the com... Succession is one of the central themes of ecology;however,the relationship between aboveground plant communities and underground soils during secondary succession remains unclear.In this study,we investigated the composition of plant community,plant-soil C:N:P stoichiometry and their relationships during secondary succession after the abandonment of farmlands for 0,10,20,30,40 and 50 a in China,2016.Results showed that the composition of plant communities was most diverse in the farmlands after secondary succession for 20 and 50 a.Soil organic carbon and total nitrogen contents slightly decreased after secondary succession for 30 a,but both were significantly higher than those of control farmland(31.21%-139.10%and 24.24%-121.21%,respectively).Moreover,C:N ratios of soil and microbe greatly contributed to the changes in plant community composition during secondary succession of abandoned farmlands,explaining 35.70%of the total variation.Particularly,soil C:N ratio was significantly and positively related with the Shannon-Wiener index.This study provides the evidence of synchronous evolution between plant community and soil during secondary succession and C:N ratio is an important linkage between them. 展开更多
关键词 C:N ratio soil NUTRIENT plant community restoration LOESS HILLY region
下载PDF
The Relationship Between Plant Community Characteristics and Soil Organic Matter Content of Sedentary Grazing Pastures in a Typical Steppe 被引量:1
3
作者 SARULA SAIXIYALATU +1 位作者 CHUN Feng ZHANG Weiqing 《Journal of Landscape Research》 2019年第1期57-60,64,共5页
In order to discuss the relationship between the characteristics of plant communities and the content of topsoil organic matter under the condition of two-season sedentary grazing, authors of this paper selected a Sti... In order to discuss the relationship between the characteristics of plant communities and the content of topsoil organic matter under the condition of two-season sedentary grazing, authors of this paper selected a Stipa krylovii steppe for research and studied the plant community characteristics and the topsoil organic matter content. The results showed that in the sedentary grazing area, the perennial plant species decreased, the annual plant species increased, and the topsoil organic matter content decreased. There were a negative correlation between plant biomass and topsoil organic matter content, and a positive correlation between total coverage and topsoil organic matter content. The change of plant community characteristics in the sedentary grazing area was related to the implementation of the system of transferring the pasture use rights to the herdsmen and controlled grazing. 展开更多
关键词 STIPA krylovii STEPPE plant community characteristics soil organic matter content SEDENTARY GRAZING
下载PDF
Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia,China
4
作者 SHEN Aihong SHI Yun +8 位作者 MI Wenbao YUE Shaoli SHE Jie ZHANG Fenghong GUO Rui HE Hongyuan WU Tao LI Hongxia ZHAO Na 《Journal of Arid Land》 SCIE CSCD 2024年第5期725-737,共13页
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s... It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems. 展开更多
关键词 proluvial fan desert plant community soil enzyme activity particulate organic carbon mineral-associated organic carbon Helan Mountain
下载PDF
Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe,China
5
作者 YE He HONG Mei +4 位作者 XU Xuehui LIANG Zhiwei JIANG Na TU Nare WU Zhendan 《Journal of Arid Land》 SCIE CSCD 2024年第3期447-459,共13页
Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio... Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe. 展开更多
关键词 soil microorganisms plant-microbial community interaction plant diversity nitrogen deposition desert steppe
下载PDF
Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau,China
6
作者 SUN Lin YU Zhouchang +5 位作者 TIAN Xingfang ZHANG Ying SHI Jiayi FU Rong LIANG Yujie ZHANG Wei 《Journal of Arid Land》 SCIE CSCD 2023年第9期1107-1128,共22页
Leguminosae are an important part of terrestrial ecosystems and play a key role in promoting soil nutrient cycling and improving soil properties.However,plant composition and species diversity change rapidly during th... Leguminosae are an important part of terrestrial ecosystems and play a key role in promoting soil nutrient cycling and improving soil properties.However,plant composition and species diversity change rapidly during the process of succession,the effect of leguminosae on soil physical-chemical and biological properties is still unclear.This study investigated the changes in the composition of plant community,vegetation characteristics,soil physical-chemical properties,and soil biological properties on five former farmlands in China,which had been abandoned for 0,5,10,18,and 30 a.Results showed that,with successional time,plant community developed from annual plants to perennial plants,the importance of Leguminosae and Asteraceae significantly increased and decreased,respectively,and the importance of grass increased and then decreased,having a maximum value after 5 a of abandonment.Plant diversity indices increased with successional time,and vegetation coverage and above-and below-ground biomass increased significantly with successional time after 5 a of abandonment.Compared with farmland,30 a of abandonment significantly increased soil nutrient content,but total and available phosphorus decreased with successional time.Changes in plant community composition and vegetation characteristics not only change soil properties and improve soil physical-chemical properties,but also regulate soil biological activity,thus affecting soil nutrient cycling.Among these,Leguminosae have the greatest influence on soil properties,and their importance values and community composition are significantly correlated with soil properties.Therefore,this research provides more scientific guidance for selecting plant species to stabilize soil ecosystem of farmland to grassland in the Loess Plateau,China. 展开更多
关键词 secondary succession LEGUMINOSAE plant diversity plant community composition soil physical-chemical properties soil biological properties
下载PDF
Plant community and soil properties drive arbuscular mycorrhizal fungal diversity:A case study in tropical forests
7
作者 Jing Zhang Changxin Quan +3 位作者 Lingling Ma Guowei Chu Zhanfeng Liu Xuli Tang 《Soil Ecology Letters》 CAS 2021年第1期52-62,共11页
The mutual interdependence of plants and arbuscular mycorrhizal fungi(AMF)is important in carbon and mineral nutrient exchange.However,an understanding of how AMF community assemblies vary in different forests and the... The mutual interdependence of plants and arbuscular mycorrhizal fungi(AMF)is important in carbon and mineral nutrient exchange.However,an understanding of how AMF community assemblies vary in different forests and the underlying factors regulating AMF diversity in native tropical forests is largely unknown.We explored the AMF community assembly and the underlying factors regulating AMF diversity in a young(YF)and an old-growth forest(OF)in a tropical area.The results showed that a total of 53 AMF phylogroups(virtual taxa,VTs)were detected,38±1 in the OF and 34±1 in the YF through high-throughput sequencing of 18S rDNA,and AMF community composition was significantly different between the two forests.A structural equation model showed that the forest traits indirectly influenced AMF diversity via the plant community,soil properties and microbes,which explained 44.2%of the total observed variation in AMF diversity.Plant diversity and biomass were the strongest predictors of AMF diversity,indicating that AMF diversity was dominantly regulated by biotic factors at our study sites.Our study indicated that forest community traits have a predictable effect on the AMF community;plant community traits and soil properties are particularly important for determining AMF diversity in tropical forests. 展开更多
关键词 Arbuscular mycorrhizal fungi High-throughput sequencing Microbes plant community traits soil properties Tropical forests
原文传递
Effects of seven different companion plants on cucumber productivity, soil chemical characteristics and Pseudomonas community 被引量:4
8
作者 CHANG Chun-ling FU Xue-peng +2 位作者 ZHOU Xin-gang GUO Mei-yu WU Feng-zhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第10期2206-2214,共9页
Companion cropping can influence cucumber productivity by altering soil chemical characteristics and microbial communities. However, how these alterations affect the growth of cucumber is still unknown. In this study,... Companion cropping can influence cucumber productivity by altering soil chemical characteristics and microbial communities. However, how these alterations affect the growth of cucumber is still unknown. In this study, seven different plant species were selected as companion plants for testing their effects on cucumber productivity. The effects of different companion plants on changes in soil chemical properties such as electrical conductivity (EC) and contents of essential nutrients as well as the structure and abundance of the soil Pseudomonas community were evaluated. The results showed a higher cucumber yield in the wheat/cucumber companion system than that in the cucumber monocultured and other companion cropping systems. The lowest phosphorus (P) and potassium (K) contents in the soil were found in the cucumber monocultured system, and the highest NO3+-N and NH4*-N contents were observed in the rye/cucumber companion system. PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR analysis showed that the trifolium/cucumber companion system increased the diversity of the soil Pseudomonas community, while the chrysanthemum/cucumber companion system increased its abundance. Interestingly, plant-soil feedback trials revealed that inoculating the soil of the wheat/cucumber companion system increased the growth of cucumber seedlings. In conclusion, the effects of different companion plants on cucumber productivity, soil chemical characteristics and the soil Pseudomonas community were different, and wheat was a more suitable companion plant for increasing cucumber productivity. In addition, the altered microbial community caused by companion cropping with wheat contributed to increased cucumber productivity. 展开更多
关键词 CUCUMBER companion plants soil chemical characteristics Pseudomonas community
下载PDF
Effects of a low-voltage electric pulse charged to culture soil on plant growth and variations of the bacterial community 被引量:1
9
作者 Jun Yeong Yi Ji Won Choi +2 位作者 Bo Young Jeon Il Lae Jung Doo Hyun Park 《Agricultural Sciences》 2012年第3期339-346,共8页
This study was conducted to verify the effect of an electric pulse on growth of crops (lettuce and hot pepper) that were cultivated in lab-scale soil. The electric pulse generated from direct-circuited 2, 4, 6, 8, and... This study was conducted to verify the effect of an electric pulse on growth of crops (lettuce and hot pepper) that were cultivated in lab-scale soil. The electric pulse generated from direct-circuited 2, 4, 6, 8, and 10 V of electricity by periodic exchange of the anode and cathode was charged to a culture soil that is an electrically pulsed culture soil (EPCS) but not charged to a conventional culture soil (CCS). Growth of lettuce increased and growth duration of hot pepper plants was more prolonged at 4, 6, 8, and 10 V of EPCS than at 2 V of EPCS and CCS. The fruiting duration and yield of hot pepper fruits were proportional to the growth duration of the hot pepper plants. Temperature gradient gel electrophoresis (TGGE) patterns of 16S-rDNA obtained from the bacterial community inhabiting the CCS and EPCS were identical at the initial time and did not change significantly at days 28 and 56 of cultivation. The bacterial communities inhabiting the surface of lettuce roots were not influenced by the electric pulse but were significantly different from those inhabiting the culture soil based on the TGGE patterns. Growth of lettuce and hot pepper plants that were cultivated in 4 - 10 V of EPCS may increase;however, the bacterial community inhabiting the soil and the surface of plant roots may not be influenced by an electric pulse. 展开更多
关键词 Electrically Pulsed soil TGGE LETTUCE Hot PEPPER plant BACTERIAL community
下载PDF
Radioactivity Levels and Soil-to-Plant Transfer Factor of Natural Radionuclides from Protectorate Area in Aswan, Egypt
10
作者 S. Harb A. H. El-Kamel +2 位作者 A. I. Abd El-Mageed A. Abbady W. Rashed 《World Journal of Nuclear Science and Technology》 2014年第1期7-15,共9页
The aim of this study is to determine the transfer factor soil-to-plant and to assess the concentration level of natural and artificial radionuclide (238U, 226Ra, 228Ra, 232Th, 40K and 137Cs) in samples from Saluga an... The aim of this study is to determine the transfer factor soil-to-plant and to assess the concentration level of natural and artificial radionuclide (238U, 226Ra, 228Ra, 232Th, 40K and 137Cs) in samples from Saluga and Ghazal Protectorate area in Aswan, Egypt, by using High Pure Germanium detector (HPGe) Environmental Radioactivity Measurements Labrotary in faculty of science Qena. Reported values for natural radionuclides ranged from 8.81 ± 0.64 to 28.88 ± 2.10, from 6.98 ± 0.51 to 26.01 ± 1.89, from 12.29 ± 0.89 to 33.32 ± 2.43, from 12.53 ± 0.91 to 32.81 ± 2.39 and from 383.90 ± 27.95 to 711.98 ± 51.83 Bq.kg-1 for 238U, 226Ra, 228Ra, 232Th and 40K, respectively. 137Cs activity concentration was found to be in the range from 0.36 ± 0.03 to 9.73 ± 0.71 Bq.kg-1 and was calculated through transfer factor TF reported in this article. 展开更多
关键词 NATURAL Radionuclides TRANSFER factor plant soil Protectorate Area
下载PDF
Effects of soil nitrate:ammonium ratio on plant carbon:nitrogen ratio and growth rate of Artemisia sphaerocephala seedlings 被引量:1
11
作者 Rong Li XingDong He +4 位作者 PingPing Xue HuaCong Ci Wei Wu YuBao Gao HaLin Zhao 《Research in Cold and Arid Regions》 2010年第5期445-454,共10页
Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two question... Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant. 展开更多
关键词 soil nitrate: ammonium ratio plant carbon: nitrogen ratio growth rate nitrogen limitation plant community succession
下载PDF
Effects of coal-fired power plants on soil microbial diversity and community structures
12
作者 Bowen Sun Renbin Zhu +6 位作者 Yu Shi Wanying Zhang Zeming Zhou Dawei Ma Runfang Wang Haitao Dai Chenshuai Che 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期206-223,共18页
Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power... Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power plants on soil microbial communities have received little attention through atmospheric pollutant deposition and coal-stacking.Here,we collected the samples of power plant soils(PS),coal-stacking soils(CSS)and agricultural soils(AS)around three coal-fired power plants and background control soils(BG)in Huainan,a typical mineral resource-based city in East China,and investigated the microbial diversity and community structures through a high-throughput sequencing technique.Coal-stacking significantly increased(p<0.05)the contents of total carbon,total nitrogen,total sulfur and Mo in the soils,whereas the deposition of atmospheric pollutants enhanced the levels of V,Cu,Zn and Pb.Proteobacteria,Actinobacteria,Thaumarchaeota,Thermoplasmata,Ascomycota and Basidiomycota were the dominant taxa in all soils.The bacterial community showed significant differences(p<0.05)among PS,CSS,AS and BG,whereas archaeal and fungal communities showed significant differences(p<0.01)according to soil samples around three coal-fired power plants.The predominant environmental variables affecting soil bacterial,archaeal and fungal communities were Mo-TN-TS,Cu-V-Mo,and organic matter(OM)-Mo,respectively.Certain soil microbial genera were closely related to multiple key factors associated with stacking coal and heavy metal deposition from power plants.This study provided useful insight into better understanding of the relationships between soil microbial communities and long-term disturbances from coal-fired power plants. 展开更多
关键词 Coal-fired power plants soil microbial communities Coal-stacking Heavy metals Environmental variables
原文传递
Insights into Ecological Effects of Invasive Plants on Soil Nitrogen Cycles 被引量:6
13
作者 Congyan Wang Hongguang Xiao +2 位作者 Jun Liu Lei Wang Daolin Du 《American Journal of Plant Sciences》 2015年第1期34-46,共13页
The increasing degree of plant invasion is an expanding problem that affects the functioning and composition of forest ecosystems with increasing anthropogenic activities, particularly soil nitrogen (N) cycles. Numero... The increasing degree of plant invasion is an expanding problem that affects the functioning and composition of forest ecosystems with increasing anthropogenic activities, particularly soil nitrogen (N) cycles. Numerous studies have revealed that one of the main factors for successful plant invasion is that plants could pose significant effects on soil N cycles via direct and/or indirect ways, such as changes in soil microbial communities, litter decomposition rates, and/or soil physicochemical properties. We thereby summarize the ecological effects of invasive plants on soil N cycles, including the aforementioned changes, to understand the mechanism of successful invasion. We also discuss the needs for further research on the relationship between invasive plants and soil N cycles. 展开更多
关键词 INVASIVENESS INVASIVE plants LITTER Decomposition soil N Cycles soil MICROBIAL community
下载PDF
Influence of tourist disturbance on soil properties, plant communities, and surface water quality in the Tianchi scenic area of Xinjiang, China 被引量:2
14
作者 WEN Bin ZHANG Xiaolei +2 位作者 YANG Zhaoping XIONG Heigang QIU Yang 《Journal of Arid Land》 SCIE CSCD 2016年第2期304-313,共10页
The impact of tourist disturbance on the environment has become a focal issue of environmental science, ecology, and travel management studies. To assess the influence of tourist disturbance on soils and plants in the... The impact of tourist disturbance on the environment has become a focal issue of environmental science, ecology, and travel management studies. To assess the influence of tourist disturbance on soils and plants in the Tianchi scenic area of Xinjiang, China, we compared soil properties and plant community characteristics at 0, 5, 10, and 20 m from the tourist trail within areas at three different altitudes, where the intensities of tourist disturbance are distinct. Surface water quality was also studied at three different levels relative to the Tianchi Lake. The results showed that tourist disturbance significantly increased soil pH within 10 m from the trail and soil bulk density on the edge of the trail, but significantly reduced soil organic matter and total nitrogen contents within 5 m from the trail. The number of tree seedlings on the edge of the trail and the shrub coverage and height of herbaceous plants within 5 m from the trail significantly decreased due to tourist disturbance. Changes in herbaceous plant diversity differed by soil zones. In the high altitude region, tourist disturbance led to a remarkable increase in the herbaceous plant diversity on the edge of the trail, while in the low altitude region, tourist disturbance had a low impact on the diversity of herbaceous plants. In addition, tourist activities polluted the surface water, significantly reducing water quality. Thus, current tourist activities have a significant negative impact on the ecological environment in the Tianchi scenic area. 展开更多
关键词 tourist disturbance soil properties plant communities water quality Tianchi scenic area
下载PDF
Graphene oxide influences bacterial community and soil environments of Cd-polluted Haplic Cambisols in Northeast China 被引量:1
15
作者 Jiaxin Ru Guoyou Chen +2 位作者 Yong Liu Ying Sang Jinfeng Song 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第4期1699-1711,共13页
Graphene oxide(GO),a carbon nanomaterial that is widely used in the environment and other industries,may pose potential risks to ecosystems,especially the soil ecosystem.Some soils in Northeast China are frequently po... Graphene oxide(GO),a carbon nanomaterial that is widely used in the environment and other industries,may pose potential risks to ecosystems,especially the soil ecosystem.Some soils in Northeast China are frequently polluted with cadmium(Cd) metal.However,there is no study on the influence of GO on the Cd-contaminated soil microbial community and soil chemical properties.In this study,Cd(100 mg kg^(-1))-polluted soils were treated with different concentrations of GO(0,25,50,150,250,and 500 mg L^(-1),expressed as T1,T2,T3,T4,T5,and T6,respectively) for 40 days.The treatment without Cd pollution and GO served as the control(CK).Then,we investigated the influence of the GO concentrations on the bacterial community and chemical properties of Cd-polluted Haplic Cambisols,the zonal soil in Northeast China.After GO addition,the richness and diversity indexes of the bacterial community in Cd-contaminated Haplic Cambisols initially increased by 0.05-33.92% at 25 mg L^(-1),then decreased by0.07-2.37% at 50 mg L^(-1),and then increased by 0.01-24.37%within 500 mg L^(-1) again.The species and abundance of bacteria varied with GO concentration,and GO significantly increased bacterial growth at 25 and 250 mg L^(-1).GO treatments influenced the bacterial community structure,and the order of similarity of the bacterial community structure was as follows:T4=T5> T1=T6> T2> T3> CK.Proteobacteria and Acidobacteria were the dominant bacteria,accounting for 36.0% and 26.2%,respectively,of soil bacteria.Different GO treatments also significantly affected the metabolic function of bacteria and further influenced the diversity of the bacterial community structure by affecting several key soil chemical properties:soil pH,organic matter and available potassium,phosphorus,and cadmium.Our results provide a theoretical basis for scientific and comprehensive evaluation of the environmental impacts of GO on the zonal forest soils of Northeast China. 展开更多
关键词 Cadmium pollution Haplic cambisols Graphene oxide Bacterial community soil environmental factors
下载PDF
Effects of Liaoning Hongyanhe Nuclear Power Plant on the Zooplankton Community in Summer of 2017
16
作者 WANG Junjian TAO Zhencheng +3 位作者 WANG Yantao WEI Hao LIU Xin LI Chaolun 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第5期1140-1152,共13页
To evaluate the effects of the Hongyanhe Nuclear Power Plant on the zooplankton community in the surrounding seawater during summer, multiple environmental factors and zooplankton distribution along the east coast of ... To evaluate the effects of the Hongyanhe Nuclear Power Plant on the zooplankton community in the surrounding seawater during summer, multiple environmental factors and zooplankton distribution along the east coast of Liaodong Bay were investigated in the summer of 2017. In particular, the influences of seawater temperature, salinity, and chlorophyll a(Chl a) on the zooplankton community were analyzed. Zooplankton abundances and Chl a concentrations along the east coast of Liaodong Bay showed an initial increase followed by a decrease from July to September. During the three months, the zooplankton abundance was the highest(8116.70 ind m^(-3)) in August. The Shannon-Wiener index showed a downtrend from July to September, with the average value falling from 1.65 in July to 1.50 in September. Calanus sinicus, Paracalanus parvus, copepodid, and bivalve larvae were the dominant species/groups in the three months. The effects of the nuclear power plant's outlet on the environment factors were mainly reflected in the increased seawater temperature. Redundancy analysis showed that the zooplankton community was jointly affected by seawater temperature, salinity and Chl a concentration, and the degree of this impact varied monthly. The impact of seawater temperature on the zooplankton community was stronger than that of salinity. The primary impact of the Hongyanhe Nuclear Power Plant on the structure and distribution of the zooplankton community in the surrounding seawater during the summer was increased seawater temperature, which caused a reduction in the abundance of dominant species/groups. 展开更多
关键词 ZOOPLANKTON ABUNDANCE community structure DIVERSITY environmental factor Hongyanhe Nuclear Power plant
下载PDF
土壤微塑料影响植物生长的因素与机制研究进展 被引量:1
17
作者 陈欣 郭薇 +1 位作者 李济之 迟光宇 《农业环境科学学报》 CAS CSCD 北大核心 2024年第3期488-495,共8页
土壤中的微塑料可通过多种方式影响植物生长,并且其在植物体内积累会最终通过食物链进入人体,厘清微塑料对植物生长的影响及机制,有助于系统掌握其在土壤-植物体系中的环境行为。微塑料的赋存状态和理化特征均可影响其对植物的作用效果... 土壤中的微塑料可通过多种方式影响植物生长,并且其在植物体内积累会最终通过食物链进入人体,厘清微塑料对植物生长的影响及机制,有助于系统掌握其在土壤-植物体系中的环境行为。微塑料的赋存状态和理化特征均可影响其对植物的作用效果,本文从粒径、形状、浓度、种类、塑料添加剂和老化程度等方面,梳理了土壤微塑料影响植物生长的主要因素及作用机制,并对未来研究的重点内容提出展望,以期为进一步明晰微塑料对土壤生态系统的影响提供参考。 展开更多
关键词 土壤 微塑料 植物 影响因素 作用机制
下载PDF
Plant microbiomes and their role in plant health
18
作者 Rohit Patil Rajendra Satpute Dinesh Nalage 《Microenvironment & Microecology Research》 2023年第1期4-8,共5页
Microorganisms are integral inhabitants of plants,playing a crucial role in plant growth,development,and health.The composition and diversity of microorganisms in plants can be influenced by several factors,including ... Microorganisms are integral inhabitants of plants,playing a crucial role in plant growth,development,and health.The composition and diversity of microorganisms in plants can be influenced by several factors,including environmental factors such as soil type,temperature,and water availability.The plant microbiome serves essential functions,including nutrient acquisition,disease resistance,and stress tolerance,achieved through complex interactions between microorganisms and plants.Understanding these interactions and the impact of environmental factors can provide valuable insights into developing sustainable agricultural practices.The use of plant microbiomes in agriculture has the potential to improve crop yield,reduce fertilizer and pesticide use,and enhance soil health and sustainability,but scaling up these technologies poses several challenges.The potential benefits of using plant microbiomes in agriculture are significant and could revolutionize the industry.However,scaling up these technologies presents several challenges that require further research and innovation.In conclusion,studying plant microbiomes has the potential to bring about positive impacts for farmers,consumers,and the environment. 展开更多
关键词 plant microbiome environmental factors sustainable agriculture crop yield soil health
下载PDF
Mycorrhizal fungi mitigate nitrogen losses of an experimental grassland by facilitating plant uptake and soil microbial immobilization
19
作者 Yangyang JIA Marcel G.A.VAN DER HEIJDEN +2 位作者 Alain Y.VALZANO-HELD Markus JOCHER Florian WALDER 《Pedosphere》 SCIE CAS CSCD 2024年第2期399-410,共12页
Nitrogen(N)is one of the most limited nutrients of terrestrial ecosystems,whose losses are prevented in tightly coupled cycles in finely tuned systems.Global change-induced N enrichment through atmospheric deposition ... Nitrogen(N)is one of the most limited nutrients of terrestrial ecosystems,whose losses are prevented in tightly coupled cycles in finely tuned systems.Global change-induced N enrichment through atmospheric deposition and application of vast amounts of fertilizer are now challenging the terrestrial N cycle.Arbuscular mycorrhizal fungi(AMF)are known drivers of plant-soil nutrient fluxes,but a comprehensive assessment of AMF involvement in N cycling under global change is still lacking.Here,we simulated N enrichment by fertilization(low/high)in experimental grassland microcosms under greenhouse conditions in the presence or absence of AMF and continuously monitored different N pathways over nine months.We found that high N enrichment by fertilization decreased the relative abundance of legumes and the plant species dominating the plant community changed from grasses to forbs in the presence of AMF,based on aboveground biomass.The presence of AMF always maintained plant N:phosphorus(P)ratios between 14 and 16,no matter how the soil N availability changed.Shifts in plant N:P ratios due to the increased plant N and P uptake might thus be a primary pathway of AMF altering plant community composition.Furthermore,we constructed a comprehensive picture of AMF’s role in N cycling,highlighting that AMF reduced N losses primarily by mitigating N leaching,while N_(2)O emissions played a marginal role.Arbuscular mycorrhizal fungi reduced N_(2)O emissions directly through the promotion of N_(2)O-consuming denitrifiers.The underlying mechanism for reducing N leaching is mainly the AMF-mediated improved nutrient uptake and AMF-associated microbial immobilization.Our results indicate that synergies between AMF and other soil microorganisms cannot be ignored in N cycling and that the integral role of AMF in N cycling terrestrial ecosystems can buffer the upcoming global changes. 展开更多
关键词 N cycling N enrichment N uptake N:P ratio plant community structure symbiotic soil fungi
原文传递
西藏高寒草原湿润度梯度下植物群落特征空间格局及其驱动因子
20
作者 任世杰 宋朝阳 +4 位作者 林长存 刘思奇 刘涛 张雪梅 纪宝明 《生态学报》 CAS CSCD 北大核心 2024年第5期1996-2007,共12页
西藏高原是中国高寒生态系统类型和生物多样性均聚集的区域之一,其中以高寒典型草原和高寒草甸草原为主生态系统类型,但其系统活力、组织力和恢复力均较弱,容易受到全球气候变化的影响,表现出极强的脆弱性。目前青藏高原草地生态系统植... 西藏高原是中国高寒生态系统类型和生物多样性均聚集的区域之一,其中以高寒典型草原和高寒草甸草原为主生态系统类型,但其系统活力、组织力和恢复力均较弱,容易受到全球气候变化的影响,表现出极强的脆弱性。目前青藏高原草地生态系统植物群落分布状况与其变化规律以及对各种环境因子的反应研究多集中于站点尺度或样带尺度,但研究结果尚有较大的不确定性。研究于西藏地区沿着不同的湿润度梯度选择14处高寒草原区样地,通过植物群落调查、土壤理化性质分析,探索草本植被群落空间格局对气候因子响应特征及其主要驱动因子,其结果为青藏高原天然草地保护和可持续利用提供基础科学数据支撑。结果表明:(1)研究区内依据湿润度分区可分为干旱区、微干区、微润区和湿润区4类;研究区1971—2021年的气候数据分析发现,北部的干旱程度在逐渐减轻,而南部在1991—2010阶段干旱化趋势逐渐加强,整个研究区的湿润度指数均在下降;(2)植物群落调查发现不同植物功能群的变化各有差异,莎草科地上生物量随湿润度增加而增加,杂类草地上生物量呈现单峰趋势,而其他植物功能群无明显规律;湿润度较高的微润区间植物群落的Shannon-Wiener指数、Simpson指数、丰富度指数、均匀度指数均高于其他湿润度区间;(3)土壤理化性质分析发现高湿润度区域的土壤含水量、全氮、硝态氮、铵态氮、速效磷含量均为最高;对各环境因子与植物群落特征指标进行相关性、主成分分析后构建结构方程模型,发现直接影响西藏高寒草原植物群落特征变化因子为湿润度,土壤含水量和土壤pH,且都表现为显著的负效应(P<0.05),同时湿润度对土壤含水量和土壤全量养分产生了显著的正向影响(P<0.05),进而影响着西藏高原高寒草原不同植物功能群的分布、多样性、地上生物量。 展开更多
关键词 西藏高寒草原 湿润度 植物群落特征 气候因子 土壤理化性质
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部