期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Asymmetric bioreduction of substituted acenaphthenequinones using plant enzymatic systems:A novel strategy for the preparation of(+)- and(-)-mono hydroxyacenaphthenones
1
作者 Lian Peng Tong Jing Nan Cui +2 位作者 Wei Min Ren Xing Yong Wang Xu Hong Qian 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第10期1179-1182,共4页
Regio- and enantioselective reduction of substituted acenaphthenequinones were conducted under mild reaction conditions using plant enzymatic systems. A screening of 15 plants allowed the selection of two suitable pla... Regio- and enantioselective reduction of substituted acenaphthenequinones were conducted under mild reaction conditions using plant enzymatic systems. A screening of 15 plants allowed the selection of two suitable plants fulfilling enantiocomple- mentarity. The (+)- and (-)-mono hydroxyacenaphthenones were achieved with high conversion and good enantiomeric purity using peach (Prunus persica (L.) Batsch., conversion 98%, 71% ee) and carrot (Daucus carota L., conversion 95%, 81% ee), respectively. 展开更多
关键词 BIOREDUCTION plant enzymes ACENAPHTHENEQUINONE Chiral hydroxyacenaphthenone
下载PDF
Effect of Rhizobacterium Rhodopseudomonas palustris Inoculation on Stevia rebaudiana Plant Growth and Soil Microbial Community 被引量:6
2
作者 XU Jiangbing FENG Youzhi +1 位作者 WANG Yanling LIN Xiangui 《Pedosphere》 SCIE CAS CSCD 2018年第5期793-803,共11页
There is an increasing concern that the continuous use of chemical fertilizers might lead to harmful effects on soil ecosystem.Accordingly, a biocompatible approach involving inoculation of beneficial microorganisms i... There is an increasing concern that the continuous use of chemical fertilizers might lead to harmful effects on soil ecosystem.Accordingly, a biocompatible approach involving inoculation of beneficial microorganisms is presented to promote plant growth and simultaneously minimize the negative effect of chemical fertilizers. In this study, Rhodopseudomonas palustris, a plant growth-promoting rhizobacterium(PGPR), was inoculated into both fertilized and unfertilized soils to assess its influence on Stevia rebaudiana plant growth and microbial community in rhizosphere soils in a 122-d field experiment. Soil enzyme assays(dehydrogenase, urease, invertase, and phosphomonoesterase), real-time quantitative polymerase chain reaction(RT-_qPCR), and a high-throughput sequencing technique were employed to determine the microbial activity and characterize the bacterial community. Results showed that the R.palustris inoculation did not significantly influence Stevia yields and root biomass in either the fertilized or unfertilized soil. Chemical fertilization had strong negative effects on soil bacterial community properties, especially on dehydrogenase and urease activities.However, R. palustris inoculation counteracted the effect of chemical fertilizer on dehydrogenase and urease activities, and increased the abundances of some bacterial lineages(including Bacteroidia, Nitrospirae, Planctomycetacia, Myxococcales, and Legionellales). In contrast, inoculation into the unfertilized soil did not significantly change the soil enzyme activities or the soil bacterial community structure. For both the fertilized and unfertilized soils, R. palustris inoculation decreased the relative abundances of some bacterial lineages possessing photosynthetic ability, such as Cyanobacteria, Rhodobacter, Sphingomonadales, and Burkholderiales. Taken together, our observations stress the potential utilization of R. palustris as PGPR in agriculture, which might further ameliorate the soil microbial properties in the long run. 展开更多
关键词 bacterial community structure beneficial microorganism chemical fertilization plant growth-promoting rhizobacterium soil enzyme activity
原文传递
Responses of Carbonic Anhydrase to Cadmium in the Zinc/Cadmium Hyperaccumulator Picris divaricata Vant.
3
作者 LIU Saihua TANG Yetao +3 位作者 QIU Rongliang YING Rongrong GE Ruiguang JI Xionghui 《Pedosphere》 SCIE CAS CSCD 2016年第5期709-716,共8页
A number of higher plants are able to hyperaccumulate cadmium(Cd). However, it is unknown whether cadmium(Cd) plays a biological functional role in the carbonic anhydrase(CA) of hyperaccumulators. A hydroponic experim... A number of higher plants are able to hyperaccumulate cadmium(Cd). However, it is unknown whether cadmium(Cd) plays a biological functional role in the carbonic anhydrase(CA) of hyperaccumulators. A hydroponic experiment was conducted to explore the potentially physiological function of Cd in CA and the accumulation and tolerance of Cd in the Zn/Cd hyperaccumulator Picris divaricata Vant. P. divaricata was exposed to nutrient solutions with six Cd concentrations(0, 5, 10, 25, 50 and 75 μmol L^(-1)). After 12 d, plants were harvested for the analysis of plant biomass, Cd concentration and CA activity. The Cd concentrations in plant increased with the increasing Cd in nutrient solution, reaching 640 and 3 100 mg kg^(-1) in shoot and root, respectively, at the 75 μmol L^(-1) Cd treatment. Meanwhile, plant growth was enhanced by the Cd treatments at 5–25 μmol L^(-1), but it was significantly inhibited when the plants were exposed to solutions with higher Cd concerntrations(50 and 75 μmol L^(-1)). Exposure to Cd significantly increased the CA activity in P. divaricata, which reached a maximum value of 21.27 U mg^(-1) proteins at the 25 μmol L^(-1)Cd treatment, and the CA activity and shoot Cd concentration were positively correlated at solutions Cd of ≤ 25 μmol L^(-1). Moreover, two protein bands appeared on the denatured gel electrophoresis of purified CA, indicating that P. divaricata may have CA isomers with their respective molecular weights at around 60 and 55 k Da, at least one of which is Cd-bound. In addition, trace amounts of Cd in purified CA significantly increased with the supplied Cd concentration in nutrient solution(5–25 μmol L^(-1)). The results suggested that Cd may play a biological role by enhancing the activities and forming the active Cd-specific CA in the hyperaccumulator P. divaricata. 展开更多
关键词 Cd enzyme purification heavy metal metal-contaminated soil PHYTOREMEDIATION plant enzyme protein PURIFICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部