The fungal community associated with beach sand and plants located along marine coasts are an under-studied area of research despite its potential relevance to human health. In this study, we isolated and identified t...The fungal community associated with beach sand and plants located along marine coasts are an under-studied area of research despite its potential relevance to human health. In this study, we isolated and identified the cultivable mycobiota associated with sand and plants collected along the coast of Gran Canaria (Spain) using culture-dependent and -independent methods. Clinically relevant species belonging to Cryptococcus spp. and related genera such as Naganishia and Papilotrema were isolated and identified from shoreline plants. Moreover, Candida tropicalis was isolated from beach sand, and Aspergillus fumigatus and Aspergillus terreus strains were associated with both types of samples (i.e., plants and beach sand). We conclude that beach sand and shoreline plants are potential reservoirs of fungi of high clinical interest. We recommend including beach sand and plants from the environment when assessing the quality of marine coastal systems. Our results open a framework for studying the natural marine environment and its role in the epidemiology of infectious diseases in order to more accurately manage public health.展开更多
Despite the nutritional, economic and medicinal values of banana plant, independent of the region and production system is confronted with some diseases such as the fungi disease. These fungal diseases are responsible...Despite the nutritional, economic and medicinal values of banana plant, independent of the region and production system is confronted with some diseases such as the fungi disease. These fungal diseases are responsible for the low yields. The objective of this study was to improve the sanitary state of banana plant. To achieve this objective, fungi associated with banana leaves were isolated on Potato Dextrose Agar (PDA) culture medium and their identification was done on the basis of morphological and microscopic characteristics using reference documents. Antifungal activity of Allium ampeloprasum and Cymbopogon citratus extracts were evaluated in vitro on agar medium on the development of Pseudocercospora fijiensis, P. musicola and Pestalopsis sp. The results showed that banana plant harbours a diversity of fungal species, the most frequent being P. fijiensis (51.58%), Pestalopsis sp. (15.47%) and P. musicola (12.03%). Aqueous extracts of C. citratus at the concentration of 15 mg/ml, inhibited 100% of the radial growth of P. fijiensis and Pestalopsis sp with a fungitoxic activity. Similarly, ethanolic extract A. ampeloprasum inhibited at 100% the radial growth of Pestalopsis sp. This antifungal activity was fungistatic. These results suggest that the aqueous and ethanol extracts of the tested plants could be used as alternatives to chemical products in the fight against banana diseases especially Sigatoka. Hence further studies need to be undertaken to isolate the active compounds from these extracts with fungicidal potential.展开更多
Acorus tatarinowii Schott is a traditional Chinese medicine plant and has multiple bioactivities in medicine and pesticide field. In this study, the antifungal compound 1,2-dimethoxy-4(2-propenyl) benzene was isolat...Acorus tatarinowii Schott is a traditional Chinese medicine plant and has multiple bioactivities in medicine and pesticide field. In this study, the antifungal compound 1,2-dimethoxy-4(2-propenyl) benzene was isolated from A. tatarinowii Schott by activity-directed isolation method, and the inhibitory activity of the extract and 1,2-dimethoxy-4(2-propenyl) benzene against seven plant pathogenic fungi was evaluated. The results showed that the extract and 1,2-dimethoxy-4(2- propenyl) benzene had high inhibitory activity against hyphal growth of Thielaviopsis paradoxa (de Seynes) V. Hohnel, Pestalotia mangiferae P. Henn., Fusarium oxysporum f. sp. niveum (E. F. Smith) Syn. et Hans., Alternaria alternate Tanaka, Colletotrichum musae (Berk et Curt) V. Arx, Sphaceloma fawcettii Jenk., and Mycosphaerella sentina (Fr.) Schroter. The EC50 values of extract were 1.6162, 1.6811, 1.1253, 3.5771, 1.7024, 2.2284, and 2.2221 g L^-1, respectively, and the EC50 values of 1,2-dimethoxy-4(2-propenyl) benzene were 0.1021, 0.0997, 0.0805, 0.1742, 0.1503, 0.1853, and 0.1924 g L^-1, respectively. 1,2-Dimethoxy-4(2-propenyl) benzene also inhibited spores germination of T. paradoxa (de Seynes) V. Hohnel and F. oxysporum f. sp. niveum (E. F. Smith) Syn. et Hans., with the inhibitory rates of 98.81 and 100% at a concentration of 0.4 g L^-1 after 8 h, respectively. 1,2-Dimethoxy-4(2-propenyl) benzene is a potential botanical antifungal agent for controling of plant fungal diseases.展开更多
This article describes a coherent biocommunication categorization for the kingdoms of bacteria,fungi and plants. The investigation further shows that,besides biotic sign use in trans-,inter-and intraorganismic communi...This article describes a coherent biocommunication categorization for the kingdoms of bacteria,fungi and plants. The investigation further shows that,besides biotic sign use in trans-,inter-and intraorganismic communication processes,a common trait is interpretation of abiotic influences as indicators to generate an appropriate adaptive behaviour.Far from being mechanistic interactions,communication processes within organisms and between organisms are sign-mediated interactions.Sign-mediated interactions are the precondition for every cooperation and coordination between at least two biological agents such as cells,tissues,organs and organisms.Signs of biocommunicative processes are chemical molecules in most cases.The signs that are used in a great variety of signaling processes follow syntactic(combinatorial) ,pragmatic(context-dependent) and semantic(contentspecific) rules.These three levels of semiotic rules are helpful tools to investigate communication processes throughout all organismic kingdoms.It is not the aim to present the latest empirical data concerning communication in these three kingdoms but to present a unifying perspective that is able to interconnect transdisciplinary research on bacteria,fungi and plants.展开更多
Canola crop is rich in plant biomass. It is considered a major cash crop in North America and a potential source for biofuel. We evaluated six strains of white rot basidiomycetes under solid state fermentation (SSF) f...Canola crop is rich in plant biomass. It is considered a major cash crop in North America and a potential source for biofuel. We evaluated six strains of white rot basidiomycetes under solid state fermentation (SSF) for their potentials to secrete oxidative and hydrolytic enzymes to biodegrade canola plant biomass (CPB), and release sugars. Fuscoporia gilva and Pleurotus tuberregium produced high amount of laccase (440.86 U/L and 480.63 U/L at day 7), as well as carboxylmethylcellulase (CMCase) (4.78 U/mL at day 21 and 3.13 U/mL at day 14) and xylanase (4.48 U/mL and 7.8 U/mL at day 21), respectively. Bjerkandera adusta showed high amount of MnP (50.4 U/L) and peroxidase (64.5 U/L), relative to the other strains. Loss of organic matter peaked after 21 days of incubation in all the tested strains;however, the best result (34.0%) was shown in P. tuberregium. The highest lignin loss was observed in Coriolopsis caperata strains. Among the sugar polymers, hemicellulose was highly degraded by P. tuberregium and P. pulmonarius (4.1% - 4.6%), while cellulose (3.3% - 4.3%) was mainly degraded by F. gilva and B. adusta. Glucose was the dominant sugar released by all the fungi tested, with the highest concentration of 1.25 mg/mL produced by B. adusta at day 14 of incubation. Results indicate that selected white rot fungi can achieve significant delignification of CPB within 14 days of solid state fermentation. Their importance in low cost pretreatment of lignocellulosic biomass prior to conversion into biofuels and bio-products of economic importance is discussed.展开更多
Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investig...Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared(FTIR)spectroscopy.In this study,FTIR-attenuated total reflectance(ATR)spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants.Mixtures of mycelia and spores from 27fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements.The FTIR-ATR spectra ranging from 4 000to 400cm-1 were obtained.To classify the FTIRATR spectra,cluster analysis was compared with canonical vitiate analysis(CVA)in the spectral regions of3 050~2 800and 1 800~900cm-1.Results showed that the identification accuracies achieved 97.53%and99.18%for the cluster analysis and CVA analysis,respectively,demonstrating the high potential of this technique for fungal strain identification.展开更多
Crude plant extracts of ringworm cassia, Cassia alata L. and turmeric, Curcuma longa L. were prepared by either hot water or organic solvents such as ethanol and ether. Various concentrations of the crude extract were...Crude plant extracts of ringworm cassia, Cassia alata L. and turmeric, Curcuma longa L. were prepared by either hot water or organic solvents such as ethanol and ether. Various concentrations of the crude extract were then subjected to an in vitro test for their effectiveness on mycelia growth inhibition against some important plant pathogenic fungi such as Alternaria alternata, Colletotrichum gloeosporioides, Fusarium oxysporum fsp. lycopersici, Sclerotium rolfsii, Phytophthora infestans and Pythium sp. in comparison to commercial fungicides such as copper oxychloride and mancozeb. Reduction of the fungal growth was significantly obtained with C. longa extracts and the best median effective inhibitory concentration (IC50) value of 6.07, 6.50 and 7.13 mg/ml was from the ethanol extract for S. rolfsii, C. gloeosporioides and F. oxysporum fsp. lycopersici respectively. While all extracts from C. alata were almost the least effective against these fungi. The efficacy of C. longa extracts therefore, provided an alternative regime for the control of the fungal diseases and a promising appreciable choice for a replacement of chemical fungicides.展开更多
Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi, however, little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems. ...Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi, however, little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems. The dynamics of AM fungi with desert ephemerals were examined to determine the effects of host plant life stages on the development of AM fungi. Mean colonization of ephemeral annual plants was 45% lower than that of ephemeral perennial plants. The colonizations were much higher in the early part of the growing season than in later parts, peaking at flowering times. The phenology of AM fungi in root systems varied among different ephem- erals. The density of AM fungal spores increased with the development of ephemeral annual plants, reached its maximum at flowering times, and then plateaued about 20 days after the aboveground senescence. A significant positive correlation was found between AM fungi spore density and biomass of ephemeral annual plants. The life cycles of AM fungi associated with desert ephemerals were very shod, being about 60-70 days. Soil temperature and water content had no direct influence on the development of AM fungal spores. We concluded that the development of AM fungi was in response to desert ephemeral phenology and life history strategy.展开更多
Holoparasitism is a special life cycle of flowering plants. All carbon resources are provided by photosynthetic host plants. A recent study revealed the presence of endophytic fungi in holoparasitic plants, but their ...Holoparasitism is a special life cycle of flowering plants. All carbon resources are provided by photosynthetic host plants. A recent study revealed the presence of endophytic fungi in holoparasitic plants, but their ecological and evolutionary roles are still unknown. In this study, we examined endophytic fungi isolated from the holoparasitic plant Balanophora japonica (Balanophoraceae), collected from Kochi, Shikoku in western Japan. We isolated 23 fungal strains on inflorescences and tubers from three B. japonica plants at two locations and on one sample of the host plant (Symplocos lancifolia, Symplocaceae). Predominant isolates were Trichoderma-Hypocrea, Penicillium and Phialemonium. The first group was also predominant in the host plant. Fungal composition revealed in this study differed from the composition on B. harlandii or other root holoparasites with endophytic fungal (Rafflesia cantleyi) data. Those differences might be caused by various factors, including growth habits, location, phylogenetic position or host-parasite relationship.展开更多
文摘The fungal community associated with beach sand and plants located along marine coasts are an under-studied area of research despite its potential relevance to human health. In this study, we isolated and identified the cultivable mycobiota associated with sand and plants collected along the coast of Gran Canaria (Spain) using culture-dependent and -independent methods. Clinically relevant species belonging to Cryptococcus spp. and related genera such as Naganishia and Papilotrema were isolated and identified from shoreline plants. Moreover, Candida tropicalis was isolated from beach sand, and Aspergillus fumigatus and Aspergillus terreus strains were associated with both types of samples (i.e., plants and beach sand). We conclude that beach sand and shoreline plants are potential reservoirs of fungi of high clinical interest. We recommend including beach sand and plants from the environment when assessing the quality of marine coastal systems. Our results open a framework for studying the natural marine environment and its role in the epidemiology of infectious diseases in order to more accurately manage public health.
文摘Despite the nutritional, economic and medicinal values of banana plant, independent of the region and production system is confronted with some diseases such as the fungi disease. These fungal diseases are responsible for the low yields. The objective of this study was to improve the sanitary state of banana plant. To achieve this objective, fungi associated with banana leaves were isolated on Potato Dextrose Agar (PDA) culture medium and their identification was done on the basis of morphological and microscopic characteristics using reference documents. Antifungal activity of Allium ampeloprasum and Cymbopogon citratus extracts were evaluated in vitro on agar medium on the development of Pseudocercospora fijiensis, P. musicola and Pestalopsis sp. The results showed that banana plant harbours a diversity of fungal species, the most frequent being P. fijiensis (51.58%), Pestalopsis sp. (15.47%) and P. musicola (12.03%). Aqueous extracts of C. citratus at the concentration of 15 mg/ml, inhibited 100% of the radial growth of P. fijiensis and Pestalopsis sp with a fungitoxic activity. Similarly, ethanolic extract A. ampeloprasum inhibited at 100% the radial growth of Pestalopsis sp. This antifungal activity was fungistatic. These results suggest that the aqueous and ethanol extracts of the tested plants could be used as alternatives to chemical products in the fight against banana diseases especially Sigatoka. Hence further studies need to be undertaken to isolate the active compounds from these extracts with fungicidal potential.
基金supported by the Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University,China),Ministry of Education of China (07109001-11)Guangxi Natural Science Fund Project,China (0991097)
文摘Acorus tatarinowii Schott is a traditional Chinese medicine plant and has multiple bioactivities in medicine and pesticide field. In this study, the antifungal compound 1,2-dimethoxy-4(2-propenyl) benzene was isolated from A. tatarinowii Schott by activity-directed isolation method, and the inhibitory activity of the extract and 1,2-dimethoxy-4(2-propenyl) benzene against seven plant pathogenic fungi was evaluated. The results showed that the extract and 1,2-dimethoxy-4(2- propenyl) benzene had high inhibitory activity against hyphal growth of Thielaviopsis paradoxa (de Seynes) V. Hohnel, Pestalotia mangiferae P. Henn., Fusarium oxysporum f. sp. niveum (E. F. Smith) Syn. et Hans., Alternaria alternate Tanaka, Colletotrichum musae (Berk et Curt) V. Arx, Sphaceloma fawcettii Jenk., and Mycosphaerella sentina (Fr.) Schroter. The EC50 values of extract were 1.6162, 1.6811, 1.1253, 3.5771, 1.7024, 2.2284, and 2.2221 g L^-1, respectively, and the EC50 values of 1,2-dimethoxy-4(2-propenyl) benzene were 0.1021, 0.0997, 0.0805, 0.1742, 0.1503, 0.1853, and 0.1924 g L^-1, respectively. 1,2-Dimethoxy-4(2-propenyl) benzene also inhibited spores germination of T. paradoxa (de Seynes) V. Hohnel and F. oxysporum f. sp. niveum (E. F. Smith) Syn. et Hans., with the inhibitory rates of 98.81 and 100% at a concentration of 0.4 g L^-1 after 8 h, respectively. 1,2-Dimethoxy-4(2-propenyl) benzene is a potential botanical antifungal agent for controling of plant fungal diseases.
文摘This article describes a coherent biocommunication categorization for the kingdoms of bacteria,fungi and plants. The investigation further shows that,besides biotic sign use in trans-,inter-and intraorganismic communication processes,a common trait is interpretation of abiotic influences as indicators to generate an appropriate adaptive behaviour.Far from being mechanistic interactions,communication processes within organisms and between organisms are sign-mediated interactions.Sign-mediated interactions are the precondition for every cooperation and coordination between at least two biological agents such as cells,tissues,organs and organisms.Signs of biocommunicative processes are chemical molecules in most cases.The signs that are used in a great variety of signaling processes follow syntactic(combinatorial) ,pragmatic(context-dependent) and semantic(contentspecific) rules.These three levels of semiotic rules are helpful tools to investigate communication processes throughout all organismic kingdoms.It is not the aim to present the latest empirical data concerning communication in these three kingdoms but to present a unifying perspective that is able to interconnect transdisciplinary research on bacteria,fungi and plants.
文摘Canola crop is rich in plant biomass. It is considered a major cash crop in North America and a potential source for biofuel. We evaluated six strains of white rot basidiomycetes under solid state fermentation (SSF) for their potentials to secrete oxidative and hydrolytic enzymes to biodegrade canola plant biomass (CPB), and release sugars. Fuscoporia gilva and Pleurotus tuberregium produced high amount of laccase (440.86 U/L and 480.63 U/L at day 7), as well as carboxylmethylcellulase (CMCase) (4.78 U/mL at day 21 and 3.13 U/mL at day 14) and xylanase (4.48 U/mL and 7.8 U/mL at day 21), respectively. Bjerkandera adusta showed high amount of MnP (50.4 U/L) and peroxidase (64.5 U/L), relative to the other strains. Loss of organic matter peaked after 21 days of incubation in all the tested strains;however, the best result (34.0%) was shown in P. tuberregium. The highest lignin loss was observed in Coriolopsis caperata strains. Among the sugar polymers, hemicellulose was highly degraded by P. tuberregium and P. pulmonarius (4.1% - 4.6%), while cellulose (3.3% - 4.3%) was mainly degraded by F. gilva and B. adusta. Glucose was the dominant sugar released by all the fungi tested, with the highest concentration of 1.25 mg/mL produced by B. adusta at day 14 of incubation. Results indicate that selected white rot fungi can achieve significant delignification of CPB within 14 days of solid state fermentation. Their importance in low cost pretreatment of lignocellulosic biomass prior to conversion into biofuels and bio-products of economic importance is discussed.
基金the National Natural Science Foundation of China(31201473)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-IVFCAAS)funded by the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,P.R.China
文摘Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared(FTIR)spectroscopy.In this study,FTIR-attenuated total reflectance(ATR)spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants.Mixtures of mycelia and spores from 27fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements.The FTIR-ATR spectra ranging from 4 000to 400cm-1 were obtained.To classify the FTIRATR spectra,cluster analysis was compared with canonical vitiate analysis(CVA)in the spectral regions of3 050~2 800and 1 800~900cm-1.Results showed that the identification accuracies achieved 97.53%and99.18%for the cluster analysis and CVA analysis,respectively,demonstrating the high potential of this technique for fungal strain identification.
文摘Crude plant extracts of ringworm cassia, Cassia alata L. and turmeric, Curcuma longa L. were prepared by either hot water or organic solvents such as ethanol and ether. Various concentrations of the crude extract were then subjected to an in vitro test for their effectiveness on mycelia growth inhibition against some important plant pathogenic fungi such as Alternaria alternata, Colletotrichum gloeosporioides, Fusarium oxysporum fsp. lycopersici, Sclerotium rolfsii, Phytophthora infestans and Pythium sp. in comparison to commercial fungicides such as copper oxychloride and mancozeb. Reduction of the fungal growth was significantly obtained with C. longa extracts and the best median effective inhibitory concentration (IC50) value of 6.07, 6.50 and 7.13 mg/ml was from the ethanol extract for S. rolfsii, C. gloeosporioides and F. oxysporum fsp. lycopersici respectively. While all extracts from C. alata were almost the least effective against these fungi. The efficacy of C. longa extracts therefore, provided an alternative regime for the control of the fungal diseases and a promising appreciable choice for a replacement of chemical fungicides.
基金funded by the National Natural Science Foundation of China (30770341)the International Fund for Agricultural Development (the WATERCOPE project,I-R-1284)
文摘Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi, however, little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems. The dynamics of AM fungi with desert ephemerals were examined to determine the effects of host plant life stages on the development of AM fungi. Mean colonization of ephemeral annual plants was 45% lower than that of ephemeral perennial plants. The colonizations were much higher in the early part of the growing season than in later parts, peaking at flowering times. The phenology of AM fungi in root systems varied among different ephem- erals. The density of AM fungal spores increased with the development of ephemeral annual plants, reached its maximum at flowering times, and then plateaued about 20 days after the aboveground senescence. A significant positive correlation was found between AM fungi spore density and biomass of ephemeral annual plants. The life cycles of AM fungi associated with desert ephemerals were very shod, being about 60-70 days. Soil temperature and water content had no direct influence on the development of AM fungal spores. We concluded that the development of AM fungi was in response to desert ephemeral phenology and life history strategy.
文摘Holoparasitism is a special life cycle of flowering plants. All carbon resources are provided by photosynthetic host plants. A recent study revealed the presence of endophytic fungi in holoparasitic plants, but their ecological and evolutionary roles are still unknown. In this study, we examined endophytic fungi isolated from the holoparasitic plant Balanophora japonica (Balanophoraceae), collected from Kochi, Shikoku in western Japan. We isolated 23 fungal strains on inflorescences and tubers from three B. japonica plants at two locations and on one sample of the host plant (Symplocos lancifolia, Symplocaceae). Predominant isolates were Trichoderma-Hypocrea, Penicillium and Phialemonium. The first group was also predominant in the host plant. Fungal composition revealed in this study differed from the composition on B. harlandii or other root holoparasites with endophytic fungal (Rafflesia cantleyi) data. Those differences might be caused by various factors, including growth habits, location, phylogenetic position or host-parasite relationship.