Plant genetic transformation strategies serve as essential tools for the genetic engineering and advanced molecular breeding of plants.However,the complicated operational protocols and low efficiency of cur-rent trans...Plant genetic transformation strategies serve as essential tools for the genetic engineering and advanced molecular breeding of plants.However,the complicated operational protocols and low efficiency of cur-rent transformation strategies restrict the genetic modification of most plant species.This paper de-scribes the development of the regenerative activity–dependent in planta injection delivery(RAPID)method based on the active regeneration capacity of plants.In this method,Agrobacterium tumefaciens is delivered to plant meristems via injection to induce transfected nascent tissues.Stable transgenic plants can be obtained by subsequent vegetative propagation of the positive nascent tissues.The method was successfully used for transformation of plants with strong regeneration capacity,including different genotypes of sweet potato(Ipomoea batatas),potato(Solanum tuberosum),and bayhops(Ipo-moea pes-caprae).Compared with traditional transformation methods,RAPID has a much higher trans-formation efficiency and shorter duration,and it does not require tissue culture procedures.The RAPID method therefore overcomes the limitations of traditional methods to enable rapid in planta transformation and can be potentially applied to a wide range of plant species that are capable of active regeneration.展开更多
The utility of artificial microRNAs(amiRNAs) to induce loss of gene function has been reported for many plant species,but expression efficiency of the different amiRNA constructs in different transgenic plants was l...The utility of artificial microRNAs(amiRNAs) to induce loss of gene function has been reported for many plant species,but expression efficiency of the different amiRNA constructs in different transgenic plants was less predictable,In this study,expressions of amiRNAs through the gene backbone of Arabidopsis miR168a were examined by both Agrobacterium-mediated transient expression and stable plant genetic transformation.A corresponding trend in expression of amiRNAs by the same amiRNA constructs between the transient and the stable expression systems was observed in the experiments.Plant genetic transformation of the constructs that were highly expressible in amiRNAs in the transient agro-infiltration assays resulted in generation of transgenic lines with high level of amiRNAs.This provides a simple method for rapid and effective selection of amiRNA constructs used for a time-consuming genetic transformation in plants.展开更多
基金supported by grants from the Key Area Research and Development Program of Guangdong Province (2022B1111230001)the Science and Technology Projects in Guangzhou (E3330900-01)+3 种基金the National Natural Science Foundation of China-Guangdong Joint Fund (U1701234)the Guangdong Special Support Plan Project (2019TQ05N140)the Guangzhou Municipal Science and Technology Project (202201010641)the Guangdong Forestry Bureau (Key Laboratory of Plant Ex Situ Protection and Utilization in South China) (E336030011).
文摘Plant genetic transformation strategies serve as essential tools for the genetic engineering and advanced molecular breeding of plants.However,the complicated operational protocols and low efficiency of cur-rent transformation strategies restrict the genetic modification of most plant species.This paper de-scribes the development of the regenerative activity–dependent in planta injection delivery(RAPID)method based on the active regeneration capacity of plants.In this method,Agrobacterium tumefaciens is delivered to plant meristems via injection to induce transfected nascent tissues.Stable transgenic plants can be obtained by subsequent vegetative propagation of the positive nascent tissues.The method was successfully used for transformation of plants with strong regeneration capacity,including different genotypes of sweet potato(Ipomoea batatas),potato(Solanum tuberosum),and bayhops(Ipo-moea pes-caprae).Compared with traditional transformation methods,RAPID has a much higher trans-formation efficiency and shorter duration,and it does not require tissue culture procedures.The RAPID method therefore overcomes the limitations of traditional methods to enable rapid in planta transformation and can be potentially applied to a wide range of plant species that are capable of active regeneration.
基金supported by the Ministry of Education of China and Agriculture and Agri-Food Canada(MOE-AAFC) PhD student research program
文摘The utility of artificial microRNAs(amiRNAs) to induce loss of gene function has been reported for many plant species,but expression efficiency of the different amiRNA constructs in different transgenic plants was less predictable,In this study,expressions of amiRNAs through the gene backbone of Arabidopsis miR168a were examined by both Agrobacterium-mediated transient expression and stable plant genetic transformation.A corresponding trend in expression of amiRNAs by the same amiRNA constructs between the transient and the stable expression systems was observed in the experiments.Plant genetic transformation of the constructs that were highly expressible in amiRNAs in the transient agro-infiltration assays resulted in generation of transgenic lines with high level of amiRNAs.This provides a simple method for rapid and effective selection of amiRNA constructs used for a time-consuming genetic transformation in plants.