[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying ...[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China.展开更多
Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of ino...Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of inorganic nitrogen. However, the foliar δ^(15)N of intact plants, which is a consequence of nitrate assimilation occurring in the roots and shoots, is not suited for studying nitrate assimilation in cases where nitrate is the sole nitrogen source. In this study, Orychophragmus violaceus(Ov) and Brassica napus(Bn) plantlets, in which nitrate assimilation occurred in the leaves, were used to study the relationship between foliar δ^(15)N and nitrate assimilation.The plantlets were grown in vitro in culture media with different nitrate concentrations, and no root formation occurred for the plantlets during the multiplication stage.Nitrogen isotope fractionation occurred in both the Ov and the Bn plantlets under all treatments. Furthermore, the foliar nitrogen content of both the Ov and Bn plantlets increased with increasing nitrate concentration. Foliar nitrogen isotope fractionation was negatively correlated with foliar nitrogen content for both the Ov and Bn plantlets. Our results suggest that the foliar nitrogen isotope fractionation value could be employed to evaluate nitrate assimilation ability and leaf nitrate reductase activity.Moreover, high external nitrate concentrations couldcontribute to improved foliar nitrogen content and enhanced nitrate assimilation ability.展开更多
Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water co...Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water content, ^15N was only taken up 16.02% by Newhall and 10.11% by Yamasitaka. The most ^15N was detained in root and old shoots under water stress. Protein concentration in two cultivars significantly decreased by water deficit stress, protein content of Newhall and Yamasitaka in controlled plants was 16.29 mg/g fresh weight and 15.89 mg/g fresh weight, but at 20% of water content, these were 9.60 mg/g fresh weight and 9.02 mg/g fresh weight. Water stress increased concentration of NH3-NH4^+, Arginine and Proline. Compared with control plants, concentrations of NH3-NH4^+ in both Newhall and Yamasitaka at 20% water content treatment increased 5.83 fold and 5.71 fold, Arginine increased 197% and 205%, and Proline increased 112% and 132%.展开更多
Nitrogen is one of the essential nutrient elements for plant growth,which plays an important role in the growth and development of sugarcane. The whole growth cycle of sugarcane needs a large amount of nitrogen. Incre...Nitrogen is one of the essential nutrient elements for plant growth,which plays an important role in the growth and development of sugarcane. The whole growth cycle of sugarcane needs a large amount of nitrogen. Increasing the application of nitrogen can improve the yield of sugarcane,but it will also cause environmental pollution. Therefore,how to control or reduce the application of nitrogen fertilizer while continuously increasing sugarcane yield,reduce the increase of sugarcane production cost and environmental pollution caused by excessive application of nitrogen fertilizer has become an important scientific problem faced by sugarcane industry in China.^15N stable isotope labeling technology has been applied to many crops as a nitrogen research tool. In order to better understand the demand of nitrogen fertilizer in soil-cane system,this paper reviewed nitrogen allocation in plants,nitrogen loss,nitrogen recycling and endogenous nitrogen fixation of sugarcane based on^15N stable isotope labeling technology used in the nitrogen uptake and utilization,providing a theoretical basis for the improvement of sugarcane nitrogen use efficiency and the efficient nitrogen fertilizer management of sugarcane.展开更多
The partitioning of nitrogen deposition among forest soil (including forest floor), leachate and above- and belowground biomass of pot cultured beech seedlings in comparison to non-cultured treatments were investiga...The partitioning of nitrogen deposition among forest soil (including forest floor), leachate and above- and belowground biomass of pot cultured beech seedlings in comparison to non-cultured treatments were investigated by adding 1.92 g.m^-2 ^15N tracer in throughfall for two successive growing seasons at a greenhouse experiment. Ammonium and nitrate depositions were simulated on four treatments (cultured and non-cultured) and each treatment was labeled with either ^15N-NH4^+ or ^15N-NO3^-. Total recovery rates of the applied ^15N in the whole system accounted for 74.9% to 67.3% after ^15N-NH4^+ and 85.3% to 88.1% after ^15N-NO3^-in cultured and non-cultured treatments, respectively. The main sink for both ^15N tracers was the forest soil (including forest floor), where 34.6% to 33.7% of ^15N-NH4^+ and 13.1% to 9.0% of ^15N-NO3^-were found in cultured and non-cultured treatments, respectively, suggesting strong immobilization of both N forms by hetero- trophic microorganisms. Nitrogen immobilization by microorganisms in the forest soil (including forest floor) was three times higher when ^15N-NH4^+ was applied compared to ^15N-NO3^-. The preferential heterotrophic use of ammonium resulted in a two times higher retention of deposited ^15N-NH4^+ in the forest soil as compared to plants. In contrast, nitrate immobilization in the forest soil was lower compared to plants, although statistically it was not significantly different. In total the immobilization of ammonium in the plant-soil system was about 60% higher than nitrate, indicating the importance of the N-forms deposition for retention in forest ecosystems.展开更多
Water-soluble, nondialyzable Maillard polymers were prepared by reacting D-xylose with 15N-glycine (and/or glycine) at 68 ℃ and pH 8.0 at equimolar concentrations of 1, 0.5 and 0.1 mol L-1, respectively,for 13 days a...Water-soluble, nondialyzable Maillard polymers were prepared by reacting D-xylose with 15N-glycine (and/or glycine) at 68 ℃ and pH 8.0 at equimolar concentrations of 1, 0.5 and 0.1 mol L-1, respectively,for 13 days and partitioned into acid-insoluble (MHA) and acid-soluble (MFA) fractions. The nitrogen forms in these polymers were studied by using the 15N cross polarization-magic angle spinning nuclear magnetic resonance (CPMAS NMR) technique in combination with chemical methods. The 15N nuclear magnetic resonance (NMR) data showed that while the yield, especially the MHA/MFA ratio, varied considerably with the concentrations of the reactants, the nitrogen distribution patterns of these polymers were quite similar.From 65% to 70% of nitrogen in them was in the secondary amide and/or indole form with 24%~25% present as aliphatic and/or aromatic ammes and 5% to 11% as pyrrole and/or pyrrole-like nitrogen. More than half (50%~77%) of the N in these polymers were nonhydrolyzable. The role of Maillard reaction in the formation of nonhydrolyzable nitrogen in soil organic matter is discussed.展开更多
[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixat...[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [ Method] The ^15N isotopic fertilizer was solely applied on plants of three sugarcane cultivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using ^15N isotope. [ Result ] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [ Conclusion] The sugarcane eultivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.展开更多
A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the rad...A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the radial mobility of N blurs the interannual variations in the long-term N records.Previous studies of the chemical extraction of tree rings before analysis had produced inconsistent results and it is still unclear whether it is necessary to pre-treat wood samples from specific tree species to remove soluble N compounds before determining theδ^(15)N values.We compared the effects of pre-treatment with organic solvents and hot ultrapure water on the N concentration andδ^(15)N of tree rings from endemic Qinghai spruce(Picea crassifolia)growing in the interior of the central Qilian Mountains,China,during the last 60 a.We assessed the effects of different preparation protocols on the removal of the labile N compounds and investigated the need to pre-treat wood samples before determining theδ^(15)N values of tree rings.Increasing trends of the tree-ring N concentration were consistently observed in both the extracted and unextracted wood samples.The total N removed by extraction with organic solvents was about 17.60%,with a significantly higher amount in the sapwood section(P<0.01).Theδ^(15)N values of tree rings decreased consistently from 1960 to 2019 in both the extracted and unextracted wood samples.Extraction with organic solvents increased theδ^(15)N values markedly by about 5.2‰and reduced the variations in theδ^(15)N series.However,extraction with hot ultrapure water had little effect,with only a slight decrease in theδ^(15)N values of about 0.5‰.Our results showed that the radial pattern in the inter-ring movement of N in Qinghai spruce was not minimized by extraction with either organic solvents or hot ultrapure water.It is unnecessary to conduct hot ultrapure water extraction for the wood samples from Qinghai spruce because of its negligible effect on the removal of the labile N.Theδ^(15)N variation trend of tree rings in the unextracted wood samples was not influenced by the heartwood-sapwood transition zone.We suggest that theδ^(15)N values of the unextracted wood samples of the climate-sensitive Qinghai spruce could be used to explore the ecophysiological dynamics while focusing on the long-term variations.展开更多
Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Alton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantatio...Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Alton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantations. Using ^15N- labelled fertilisers, we investigated the effect of different forms (ammonium sulphate, ammonium nitrate, potassium nitrate and urea) and rates of application (0, 150 and 300 mg N kg^-1 dried soil) of fertilisers on the growth, ^15N recovery and carbon isotope composition (δ^13C) of hoop pine seedlings in a 12-month glasshouse trial in southeast Queensland, Australia. The ^15N-labelled fertilisers were applied to nursery-reared hoop pine seedlings, which were then grown in pots, containing ca. 1.2 kg dried soil, under well watered conditions for 12 months. Four seedlings from each treatment were harvested at 4-month intervals, divided into roots, stem and foliage, with a further subdivision for new and old foliage, and then analysed for ^15N, total N, δ^13C and total C. There was no significant response in the seedling growth to the form or rate of application of nitrogen (N) fertiliser within the 12-month period, indicating that the seedlings did not experience N deficiency when grown on second rotation hoop pine soils. While the combined ^15N recovery from soil and plant remained at around 70% throughout the experiment, the proportion of ^15N recovered from the plants increasing steadily over time. Nitrate containing fertilisers at 150 mg N kg^-1 soil gradually increased seedling foliage δ^13C over the 12-month period, indicating an increase in seedling water use efficiency.展开更多
The coastal upwelling has profound influence on the surrounding ecosystem by supplying the nutrient-replete water to the euphotic zone.Nutrient biogeochemistry was investigated in coastal waters of the eastern Hainan ...The coastal upwelling has profound influence on the surrounding ecosystem by supplying the nutrient-replete water to the euphotic zone.Nutrient biogeochemistry was investigated in coastal waters of the eastern Hainan Island in summer 2015 and autumn 2016.From perspectives of nutrient dynamics and physical transport,the nutrient fluxes entered the upper 50 m water depth(between the mixed layer and the euphotic zone)arisen from the upwelling were estimated to be 2.5-5.4 mmol/(m^(2)·d),0.15-0.28 mmol/(m^(2)·d),and 2.2-7.2 mmol/(m^(2)·d)for dissolved inorganic nitrogen(DIN),phosphate(DIP),and dissolved silicate(DSi),respectively,which were around 6-to 12-fold those in the background area.The upwelled nutrients supported an additional plankton growth of(14.70±8.95)mg/m^(2)for chlorophyll a(Chl a).The distributions of nitrateδ^(15)N andδ^(18)O above the 300 m water depth(top of the North Pacific Intermediate Water)were different among the upwelling area,background area in summer,and the stations in autumn,and the difference of environmental and biogeochemical conditions between seasons should be the reason.The higher DIN/DIP concentration ratio,nitrate concentration anomaly,and lower nitrate isotope anomaly(Δ(15,18))in the upper ocean in summer than in autumn indicated the stronger nitrogen fixation and atmospheric deposition,and the following fixed nitrogen regeneration in summer.The higher values of Chl a and nitrateδ^(15)N andδ^(18)O within the euphotic zone in autumn than the background area in summer suggested the stronger nitrate assimilation in autumn.The differences in relatively strength of the assimilation,nitrogen fixation and atmospheric deposition,and the following remineralization and nitrification between the two seasons made the higherδ^(18)O:δ^(15)N and larger difference of enzymatic isotope fractionation factors^(15)εand^(18)εfor nitrate assimilation in summer than in autumn above the North Pacific Tropical Water.展开更多
The sedimentary record of climate change in the Arctic region is useful for understanding global warming.Kongsfjord is located in the subpolar region of the Arctic and is a suitable site for studying climate change.Gl...The sedimentary record of climate change in the Arctic region is useful for understanding global warming.Kongsfjord is located in the subpolar region of the Arctic and is a suitable site for studying climate change.Glacier retreat is occurring in this region due to climate change,leading to an increase in meltwater outflow with a high debris content.In August 2017,we collected a sediment Core Z3 from the central fjord near the Yellow River Station.Then,we used the widely used chronology method of 210Pb,^(137)Cs,and other parameters to reflect the climate change record in the sedimentary environment of Kongsfjord.The results showed that after the mid-late 1990s,the mass accumulation rate of this core increased from 0.10 g/(cm^(2)·a)to 0.34 g/(cm^(2)·a),while the flux of^(210)Pb_(ex)increased from 125 Bq/(m^(2)·a)to 316 Bq/(m^(2)·a).The higher sedimentary inventory of^(210)Pb_(ex)in Kongsfjord compared to global fallout might have been caused by sediment focusing,boundary scavenging,and riverine input.Similarities between the inventory of^(137)Cs and global fallout indicated that terrestrial particulate matter was the main source of^(137)Cs in fjord sediments.The sedimentation rate increased after 1997,possibly due to the increased influx of glacial meltwater containing debris.In addition,the^(137)Cs activity,percentage of organic carbon(OC),and OC/total nitrogen concentration ratio showed increasing trends toward the top of the core since 1997,corresponding to a decrease in the mass balance of glaciers in the region.The results ofδ^(13)C,δ^(15)N and OC/TN concentration ratio showed both terrestrial and marine sources contributed to the organic matter in Core Z3.The relative contribution of terrestrial organic matter which was calculated by a two-endmember model showed an increased trend since mid-1990s.All these data indicate that global climate change has a significant impact on Arctic glaciers.展开更多
Aims Mycorrhizas(fungal roots)play vital roles in plant nutrient acquisition,performance and productivity in terrestrial ecosystems.Arbuscular mycorrhizas(AM)and ectomycorrhizas(EM)are mostly important since soil nutr...Aims Mycorrhizas(fungal roots)play vital roles in plant nutrient acquisition,performance and productivity in terrestrial ecosystems.Arbuscular mycorrhizas(AM)and ectomycorrhizas(EM)are mostly important since soil nutrients,including NH+4,NO3 and phosphorus,are translocated from mycorrhizal fungi to plants.Individual species,genera and even families of plants could be interconnected by mycorrhizal mycelia to form common mycorrhizal networks(CMNs).The function of CMNs is to provide pathways for movement or transfer of nutrients from one plant to another.In the past four decades,both ^(15)N external labeling or enrichment(usually expressed as atom%)and ^(15)N naturally occurring abundance(d^(15)N,&)techniques have been employed to trace the direction and magnitude of N transfer between plants,with their own advantages and limitations.Important Findings The heavier stable isotope ^(15)N is discriminated against 14N during biochemical,biogeochemical and physiological processes,due to a greater atomic mass.In general,non-N2-fixing plants had greater d^(15)N values than N2-fixing(;0&)ones.Foliar d^(15)N often varied by 5 to 10&in the order:non-mycorrhizas/AMs>EMs>ericoid mycorrhizas.Differences in d^(15)N(&)or ^(15)N(atom%)values could thus provide N transfer information between plants.A range of between 0 to 80%of one-way N transfer had been observed from N2-fixing mycorrhizal to non-N2-fixing mycorrhizal plants,but generally less than or around 10%in the reverse direction.Plant-to-plant N transfer may provide practical implications for plant performance in N-limited habitats.Considering that N translocation or cycling is crucial,and the potential benefits of N transfer are great in both agricultural and natural ecosystems,more research is warranted on either oneway or two-way N transfers mediated by CMNs with different species and under field conditions.展开更多
Background:Conifers partition different N forms from soil,including ammonium,nitrate,and dissolved organic N(DON),to sustain plant growth.Previous studies focused on inorganic N sources and specific amino acid forms u...Background:Conifers partition different N forms from soil,including ammonium,nitrate,and dissolved organic N(DON),to sustain plant growth.Previous studies focused on inorganic N sources and specific amino acid forms using ^(15)N labelling,but knowledge of the contribution of DON to mature conifers’N uptake is still scarce.Here,we quantified the contribution of different N forms(DON vs.NH_(4)^(+)vs.NO_(3)^(−))to total N uptake,based on ^(15)N natural abundance of plant and soil available N,in four mature conifers(Pinus koraiensis,Pinus sylvestris,Picea koraiensis,and Larix olgensis).Results:DON contributed 31%,29%,28%,and 24%to total N uptake by Larix olgensis,Picea koraiensis,Pinus koraiensis,and Pinus sylvestris,respectively,whereas nitrate contributed 42 to 52%and ammonium contributed 19 to 29%of total N uptake for these four coniferous species.Conclusions:Our results suggested that all four conifers could take up a relatively large proportion of nitrate,while DON was also an important N source for the four conifers.Given that DON was the dominant N form in study soil,such uptake pattern of conifers could be an adaptive strategy for plants to compete for the limited available N sources from soil so as to promote conifer growth and maintain species coexistence.展开更多
Salt stress is a vital factor limiting nitrogen uptake and cotton growth in arid regions.The mechanisms underlying salt stress tolerance in cotton plants under high soil salinity have not been fully elucidated.Therefo...Salt stress is a vital factor limiting nitrogen uptake and cotton growth in arid regions.The mechanisms underlying salt stress tolerance in cotton plants under high soil salinity have not been fully elucidated.Therefore,the aim of this study was to examine the proportion and mechanism of cotton nitrogen uptake under salt stress using the^(15)N isotope labeling technique.Cotton plants were grown in four undisturbed saline soils(1,3,6 and 9 dS m^(-1)),and the experiment was designed using the ENVIRO-GRO(E-G)model.The results showed that the dry matter of roots,stems and leaves of the cotton parts in slightly saline soil(C2,3 dS m^(-1))was not significant compared with the non-saline soil(C1,1 dS m^(-1)).The cotton fruit grown in low-salinity soil(C2,3 dS m^(-1))had significantly higher dry matter than that grown in the other treatments,implying that cotton plants grown in 3 dS m^(-1)soil have the best nitrogen uptake and salt tolerance.Cotton plants grown in weakly(C3,6 dS m^(-1))and moderately(C4,9 dS m^(-1))saline soils exhibited premature senescence.The distribution of total nitrogen and nitrate content in cotton was the best explanatory variable of total^(15)N recovery,of which cotton^(15)N recovery was between 26.1%and 47.2%,and soil^(15)N recovery was between 7.7%and 14.9%.Our findings provide guidance for further exploitation and utilization of saline soil resources and sustainable development of the agricultural soil ecosystem in arid regions.展开更多
基金Supported by the Financial Breeding Fund for Young Scholars in Sichuan Province(2008QNJJ-016)Financial Fund for Excellent Gene Engineering Papers in Sichuan Province (2010LWJJ-008)~~
文摘[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China.
基金supported by the National Key Research and development Program of China (2016YFC0502602)the National Natural Science Foundation of China (U1612441)the project of high-level innovative talents of Guizhou Province [2015(4035)]
文摘Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of inorganic nitrogen. However, the foliar δ^(15)N of intact plants, which is a consequence of nitrate assimilation occurring in the roots and shoots, is not suited for studying nitrate assimilation in cases where nitrate is the sole nitrogen source. In this study, Orychophragmus violaceus(Ov) and Brassica napus(Bn) plantlets, in which nitrate assimilation occurred in the leaves, were used to study the relationship between foliar δ^(15)N and nitrate assimilation.The plantlets were grown in vitro in culture media with different nitrate concentrations, and no root formation occurred for the plantlets during the multiplication stage.Nitrogen isotope fractionation occurred in both the Ov and the Bn plantlets under all treatments. Furthermore, the foliar nitrogen content of both the Ov and Bn plantlets increased with increasing nitrate concentration. Foliar nitrogen isotope fractionation was negatively correlated with foliar nitrogen content for both the Ov and Bn plantlets. Our results suggest that the foliar nitrogen isotope fractionation value could be employed to evaluate nitrate assimilation ability and leaf nitrate reductase activity.Moreover, high external nitrate concentrations couldcontribute to improved foliar nitrogen content and enhanced nitrate assimilation ability.
基金Acknowledgment The authors acknowledge the financial support of the CARS-3 (China Agricultural Research System) and National Natural Science Foundation of China (31071763) and suggestions of Dr. C.J. Lovatt,Professor of Plant Physiology, University of California, Riverside.
文摘Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water content, ^15N was only taken up 16.02% by Newhall and 10.11% by Yamasitaka. The most ^15N was detained in root and old shoots under water stress. Protein concentration in two cultivars significantly decreased by water deficit stress, protein content of Newhall and Yamasitaka in controlled plants was 16.29 mg/g fresh weight and 15.89 mg/g fresh weight, but at 20% of water content, these were 9.60 mg/g fresh weight and 9.02 mg/g fresh weight. Water stress increased concentration of NH3-NH4^+, Arginine and Proline. Compared with control plants, concentrations of NH3-NH4^+ in both Newhall and Yamasitaka at 20% water content treatment increased 5.83 fold and 5.71 fold, Arginine increased 197% and 205%, and Proline increased 112% and 132%.
基金Supported by National Natural Science Foundation of China(31860350)Guangxi Project(GK AA17202042-6)+2 种基金Earmarked Fund for China Agriculture Research System(CARS-170105)Guangxi Innovation Team Program(gjnytxgxcxtd-03-01)Fund of Guangxi Academy of Agricultural Sciences(GNK2018YT02,2018YM01,2020YM24)。
文摘Nitrogen is one of the essential nutrient elements for plant growth,which plays an important role in the growth and development of sugarcane. The whole growth cycle of sugarcane needs a large amount of nitrogen. Increasing the application of nitrogen can improve the yield of sugarcane,but it will also cause environmental pollution. Therefore,how to control or reduce the application of nitrogen fertilizer while continuously increasing sugarcane yield,reduce the increase of sugarcane production cost and environmental pollution caused by excessive application of nitrogen fertilizer has become an important scientific problem faced by sugarcane industry in China.^15N stable isotope labeling technology has been applied to many crops as a nitrogen research tool. In order to better understand the demand of nitrogen fertilizer in soil-cane system,this paper reviewed nitrogen allocation in plants,nitrogen loss,nitrogen recycling and endogenous nitrogen fixation of sugarcane based on^15N stable isotope labeling technology used in the nitrogen uptake and utilization,providing a theoretical basis for the improvement of sugarcane nitrogen use efficiency and the efficient nitrogen fertilizer management of sugarcane.
基金supported by ibw, Goet-tingen University, Germany
文摘The partitioning of nitrogen deposition among forest soil (including forest floor), leachate and above- and belowground biomass of pot cultured beech seedlings in comparison to non-cultured treatments were investigated by adding 1.92 g.m^-2 ^15N tracer in throughfall for two successive growing seasons at a greenhouse experiment. Ammonium and nitrate depositions were simulated on four treatments (cultured and non-cultured) and each treatment was labeled with either ^15N-NH4^+ or ^15N-NO3^-. Total recovery rates of the applied ^15N in the whole system accounted for 74.9% to 67.3% after ^15N-NH4^+ and 85.3% to 88.1% after ^15N-NO3^-in cultured and non-cultured treatments, respectively. The main sink for both ^15N tracers was the forest soil (including forest floor), where 34.6% to 33.7% of ^15N-NH4^+ and 13.1% to 9.0% of ^15N-NO3^-were found in cultured and non-cultured treatments, respectively, suggesting strong immobilization of both N forms by hetero- trophic microorganisms. Nitrogen immobilization by microorganisms in the forest soil (including forest floor) was three times higher when ^15N-NH4^+ was applied compared to ^15N-NO3^-. The preferential heterotrophic use of ammonium resulted in a two times higher retention of deposited ^15N-NH4^+ in the forest soil as compared to plants. In contrast, nitrate immobilization in the forest soil was lower compared to plants, although statistically it was not significantly different. In total the immobilization of ammonium in the plant-soil system was about 60% higher than nitrate, indicating the importance of the N-forms deposition for retention in forest ecosystems.
文摘Water-soluble, nondialyzable Maillard polymers were prepared by reacting D-xylose with 15N-glycine (and/or glycine) at 68 ℃ and pH 8.0 at equimolar concentrations of 1, 0.5 and 0.1 mol L-1, respectively,for 13 days and partitioned into acid-insoluble (MHA) and acid-soluble (MFA) fractions. The nitrogen forms in these polymers were studied by using the 15N cross polarization-magic angle spinning nuclear magnetic resonance (CPMAS NMR) technique in combination with chemical methods. The 15N nuclear magnetic resonance (NMR) data showed that while the yield, especially the MHA/MFA ratio, varied considerably with the concentrations of the reactants, the nitrogen distribution patterns of these polymers were quite similar.From 65% to 70% of nitrogen in them was in the secondary amide and/or indole form with 24%~25% present as aliphatic and/or aromatic ammes and 5% to 11% as pyrrole and/or pyrrole-like nitrogen. More than half (50%~77%) of the N in these polymers were nonhydrolyzable. The role of Maillard reaction in the formation of nonhydrolyzable nitrogen in soil organic matter is discussed.
基金National Natural Science Foundation of China (3026005430660085)+1 种基金Key Project of Guangxi Academy of Agricultural Sciences (2004002)Natural Science Foundation in Guangxi Zhuang Autonomous Region (0639011)~~
文摘[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [ Method] The ^15N isotopic fertilizer was solely applied on plants of three sugarcane cultivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using ^15N isotope. [ Result ] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [ Conclusion] The sugarcane eultivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.
基金supported by the National Natural Science Foundation of China (41971104)the Open Foundation of the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment+1 种基金Chinese Academy of Sciences (CASSKLLQG1817)the Qilian Mountain National Park Research Center (Qinghai)(GKQ2019-01)。
文摘A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the radial mobility of N blurs the interannual variations in the long-term N records.Previous studies of the chemical extraction of tree rings before analysis had produced inconsistent results and it is still unclear whether it is necessary to pre-treat wood samples from specific tree species to remove soluble N compounds before determining theδ^(15)N values.We compared the effects of pre-treatment with organic solvents and hot ultrapure water on the N concentration andδ^(15)N of tree rings from endemic Qinghai spruce(Picea crassifolia)growing in the interior of the central Qilian Mountains,China,during the last 60 a.We assessed the effects of different preparation protocols on the removal of the labile N compounds and investigated the need to pre-treat wood samples before determining theδ^(15)N values of tree rings.Increasing trends of the tree-ring N concentration were consistently observed in both the extracted and unextracted wood samples.The total N removed by extraction with organic solvents was about 17.60%,with a significantly higher amount in the sapwood section(P<0.01).Theδ^(15)N values of tree rings decreased consistently from 1960 to 2019 in both the extracted and unextracted wood samples.Extraction with organic solvents increased theδ^(15)N values markedly by about 5.2‰and reduced the variations in theδ^(15)N series.However,extraction with hot ultrapure water had little effect,with only a slight decrease in theδ^(15)N values of about 0.5‰.Our results showed that the radial pattern in the inter-ring movement of N in Qinghai spruce was not minimized by extraction with either organic solvents or hot ultrapure water.It is unnecessary to conduct hot ultrapure water extraction for the wood samples from Qinghai spruce because of its negligible effect on the removal of the labile N.Theδ^(15)N variation trend of tree rings in the unextracted wood samples was not influenced by the heartwood-sapwood transition zone.We suggest that theδ^(15)N values of the unextracted wood samples of the climate-sensitive Qinghai spruce could be used to explore the ecophysiological dynamics while focusing on the long-term variations.
基金Project supported by a scholarship grant from the Cooperative Research Centre for Sustainable Production Forestry,Australia
文摘Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Alton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantations. Using ^15N- labelled fertilisers, we investigated the effect of different forms (ammonium sulphate, ammonium nitrate, potassium nitrate and urea) and rates of application (0, 150 and 300 mg N kg^-1 dried soil) of fertilisers on the growth, ^15N recovery and carbon isotope composition (δ^13C) of hoop pine seedlings in a 12-month glasshouse trial in southeast Queensland, Australia. The ^15N-labelled fertilisers were applied to nursery-reared hoop pine seedlings, which were then grown in pots, containing ca. 1.2 kg dried soil, under well watered conditions for 12 months. Four seedlings from each treatment were harvested at 4-month intervals, divided into roots, stem and foliage, with a further subdivision for new and old foliage, and then analysed for ^15N, total N, δ^13C and total C. There was no significant response in the seedling growth to the form or rate of application of nitrogen (N) fertiliser within the 12-month period, indicating that the seedlings did not experience N deficiency when grown on second rotation hoop pine soils. While the combined ^15N recovery from soil and plant remained at around 70% throughout the experiment, the proportion of ^15N recovered from the plants increasing steadily over time. Nitrate containing fertilisers at 150 mg N kg^-1 soil gradually increased seedling foliage δ^13C over the 12-month period, indicating an increase in seedling water use efficiency.
基金The National Natural Science Foundation of China under contract No.41376086the Taishan Scholars Programme of Shandong Provincethe Aoshan Talents Program supported by the Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASTP-OS08。
文摘The coastal upwelling has profound influence on the surrounding ecosystem by supplying the nutrient-replete water to the euphotic zone.Nutrient biogeochemistry was investigated in coastal waters of the eastern Hainan Island in summer 2015 and autumn 2016.From perspectives of nutrient dynamics and physical transport,the nutrient fluxes entered the upper 50 m water depth(between the mixed layer and the euphotic zone)arisen from the upwelling were estimated to be 2.5-5.4 mmol/(m^(2)·d),0.15-0.28 mmol/(m^(2)·d),and 2.2-7.2 mmol/(m^(2)·d)for dissolved inorganic nitrogen(DIN),phosphate(DIP),and dissolved silicate(DSi),respectively,which were around 6-to 12-fold those in the background area.The upwelled nutrients supported an additional plankton growth of(14.70±8.95)mg/m^(2)for chlorophyll a(Chl a).The distributions of nitrateδ^(15)N andδ^(18)O above the 300 m water depth(top of the North Pacific Intermediate Water)were different among the upwelling area,background area in summer,and the stations in autumn,and the difference of environmental and biogeochemical conditions between seasons should be the reason.The higher DIN/DIP concentration ratio,nitrate concentration anomaly,and lower nitrate isotope anomaly(Δ(15,18))in the upper ocean in summer than in autumn indicated the stronger nitrogen fixation and atmospheric deposition,and the following fixed nitrogen regeneration in summer.The higher values of Chl a and nitrateδ^(15)N andδ^(18)O within the euphotic zone in autumn than the background area in summer suggested the stronger nitrate assimilation in autumn.The differences in relatively strength of the assimilation,nitrogen fixation and atmospheric deposition,and the following remineralization and nitrification between the two seasons made the higherδ^(18)O:δ^(15)N and larger difference of enzymatic isotope fractionation factors^(15)εand^(18)εfor nitrate assimilation in summer than in autumn above the North Pacific Tropical Water.
基金The National Natural Science Foundation of China under contract Nos 42107251 and 41706089the Natural Science Foundation of Fujian Province under contract No.2020J05232.
文摘The sedimentary record of climate change in the Arctic region is useful for understanding global warming.Kongsfjord is located in the subpolar region of the Arctic and is a suitable site for studying climate change.Glacier retreat is occurring in this region due to climate change,leading to an increase in meltwater outflow with a high debris content.In August 2017,we collected a sediment Core Z3 from the central fjord near the Yellow River Station.Then,we used the widely used chronology method of 210Pb,^(137)Cs,and other parameters to reflect the climate change record in the sedimentary environment of Kongsfjord.The results showed that after the mid-late 1990s,the mass accumulation rate of this core increased from 0.10 g/(cm^(2)·a)to 0.34 g/(cm^(2)·a),while the flux of^(210)Pb_(ex)increased from 125 Bq/(m^(2)·a)to 316 Bq/(m^(2)·a).The higher sedimentary inventory of^(210)Pb_(ex)in Kongsfjord compared to global fallout might have been caused by sediment focusing,boundary scavenging,and riverine input.Similarities between the inventory of^(137)Cs and global fallout indicated that terrestrial particulate matter was the main source of^(137)Cs in fjord sediments.The sedimentation rate increased after 1997,possibly due to the increased influx of glacial meltwater containing debris.In addition,the^(137)Cs activity,percentage of organic carbon(OC),and OC/total nitrogen concentration ratio showed increasing trends toward the top of the core since 1997,corresponding to a decrease in the mass balance of glaciers in the region.The results ofδ^(13)C,δ^(15)N and OC/TN concentration ratio showed both terrestrial and marine sources contributed to the organic matter in Core Z3.The relative contribution of terrestrial organic matter which was calculated by a two-endmember model showed an increased trend since mid-1990s.All these data indicate that global climate change has a significant impact on Arctic glaciers.
文摘Aims Mycorrhizas(fungal roots)play vital roles in plant nutrient acquisition,performance and productivity in terrestrial ecosystems.Arbuscular mycorrhizas(AM)and ectomycorrhizas(EM)are mostly important since soil nutrients,including NH+4,NO3 and phosphorus,are translocated from mycorrhizal fungi to plants.Individual species,genera and even families of plants could be interconnected by mycorrhizal mycelia to form common mycorrhizal networks(CMNs).The function of CMNs is to provide pathways for movement or transfer of nutrients from one plant to another.In the past four decades,both ^(15)N external labeling or enrichment(usually expressed as atom%)and ^(15)N naturally occurring abundance(d^(15)N,&)techniques have been employed to trace the direction and magnitude of N transfer between plants,with their own advantages and limitations.Important Findings The heavier stable isotope ^(15)N is discriminated against 14N during biochemical,biogeochemical and physiological processes,due to a greater atomic mass.In general,non-N2-fixing plants had greater d^(15)N values than N2-fixing(;0&)ones.Foliar d^(15)N often varied by 5 to 10&in the order:non-mycorrhizas/AMs>EMs>ericoid mycorrhizas.Differences in d^(15)N(&)or ^(15)N(atom%)values could thus provide N transfer information between plants.A range of between 0 to 80%of one-way N transfer had been observed from N2-fixing mycorrhizal to non-N2-fixing mycorrhizal plants,but generally less than or around 10%in the reverse direction.Plant-to-plant N transfer may provide practical implications for plant performance in N-limited habitats.Considering that N translocation or cycling is crucial,and the potential benefits of N transfer are great in both agricultural and natural ecosystems,more research is warranted on either oneway or two-way N transfers mediated by CMNs with different species and under field conditions.
基金funded by the National Key Research and Development Program of China(2016YFA0600802)Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDB-SSW-DQC002)+4 种基金K.C.Wong Education Foundation(GJTD-2018-07)Liaoning Vitalization Talents Program(XLYC1902016)the National Natural Science Foundation of China(41773094,41811530305,31901134,41571455,and 31770498)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23070103)Scientific Research Foundation of the Educational Department of Liaoning Province(L201908).
文摘Background:Conifers partition different N forms from soil,including ammonium,nitrate,and dissolved organic N(DON),to sustain plant growth.Previous studies focused on inorganic N sources and specific amino acid forms using ^(15)N labelling,but knowledge of the contribution of DON to mature conifers’N uptake is still scarce.Here,we quantified the contribution of different N forms(DON vs.NH_(4)^(+)vs.NO_(3)^(−))to total N uptake,based on ^(15)N natural abundance of plant and soil available N,in four mature conifers(Pinus koraiensis,Pinus sylvestris,Picea koraiensis,and Larix olgensis).Results:DON contributed 31%,29%,28%,and 24%to total N uptake by Larix olgensis,Picea koraiensis,Pinus koraiensis,and Pinus sylvestris,respectively,whereas nitrate contributed 42 to 52%and ammonium contributed 19 to 29%of total N uptake for these four coniferous species.Conclusions:Our results suggested that all four conifers could take up a relatively large proportion of nitrate,while DON was also an important N source for the four conifers.Given that DON was the dominant N form in study soil,such uptake pattern of conifers could be an adaptive strategy for plants to compete for the limited available N sources from soil so as to promote conifer growth and maintain species coexistence.
基金The work was supported by the National Natural ScienceFoundationof China(51969027,U1803244)Major Scientific and Technological Projects of XPCC in China(2017AA002,2021AB021)+1 种基金China Scholarship Council(201909505014)Shihezi University(CXRC201801,RCZK2018C22).
文摘Salt stress is a vital factor limiting nitrogen uptake and cotton growth in arid regions.The mechanisms underlying salt stress tolerance in cotton plants under high soil salinity have not been fully elucidated.Therefore,the aim of this study was to examine the proportion and mechanism of cotton nitrogen uptake under salt stress using the^(15)N isotope labeling technique.Cotton plants were grown in four undisturbed saline soils(1,3,6 and 9 dS m^(-1)),and the experiment was designed using the ENVIRO-GRO(E-G)model.The results showed that the dry matter of roots,stems and leaves of the cotton parts in slightly saline soil(C2,3 dS m^(-1))was not significant compared with the non-saline soil(C1,1 dS m^(-1)).The cotton fruit grown in low-salinity soil(C2,3 dS m^(-1))had significantly higher dry matter than that grown in the other treatments,implying that cotton plants grown in 3 dS m^(-1)soil have the best nitrogen uptake and salt tolerance.Cotton plants grown in weakly(C3,6 dS m^(-1))and moderately(C4,9 dS m^(-1))saline soils exhibited premature senescence.The distribution of total nitrogen and nitrate content in cotton was the best explanatory variable of total^(15)N recovery,of which cotton^(15)N recovery was between 26.1%and 47.2%,and soil^(15)N recovery was between 7.7%and 14.9%.Our findings provide guidance for further exploitation and utilization of saline soil resources and sustainable development of the agricultural soil ecosystem in arid regions.