Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradient...Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.展开更多
[Objective] The aim was to make full use of light-heat resources to expand the potato planting area on the base of ensuring the production of main grain crops and the limited arable land. [Methods] Through catch crops...[Objective] The aim was to make full use of light-heat resources to expand the potato planting area on the base of ensuring the production of main grain crops and the limited arable land. [Methods] Through catch crops, multiple cropping and intercropping, new multiple planting patterns of potato with efficiency are constructed, for the purpose of increasing yield and benefit of potato. [Result] In irrigated plain and hill area, three new planting patterns such as autumn potato/rope-rice,winter potato-rice-autumn potato, and autumn(winter) potato-rice were constructed.In dry land of plain and hill area, three new planting patterns such as spring(winter)potato/maize/sweet potato, spring(winter) potato/maize-autumn potato, and wheat + winter potato/maize/sweet potato were constructed. In plateau mountainous area, spring potato/maize was constructed. [Conclusion] With use of new planting patterns, the cropping index of new patterns was 200%-300%, while the accumulated temperature utilization was 68.9%-93.4%, light energy utilization was 0.98%-1.59% and straw utilization was 50%-100%. To compared with traditional planting patterns, the yield increased by 2.6%-93%, and benefit increased by 15.8%-284.3%. Furthermore,multiple planting patterns of potato have become main planting patterns in increasing yield and income in Sichuan.展开更多
[Objective] This study aimed to investigate the effects of cultivation methods on rice yield and economic benefits in the Dongting Lake area. [Method] A field plot experiment was conducted by adopting three different ...[Objective] This study aimed to investigate the effects of cultivation methods on rice yield and economic benefits in the Dongting Lake area. [Method] A field plot experiment was conducted by adopting three different planting patterns of artificial sowing, artificial throwing and mechanical transplanting. [Result] Rice yield of mechanical transplanting was 7.84% and 24.19% higher respectively than that of artificial sowing and artificial throwing. The effective panicles per unit area of mechanical transplanting and artificial throwing were less than that of artificial sowing. On the contrary, grains per spike, 1 000-grain weight and seed setting rate of mechanical transplanting and artificial throwing were less than those of artificial sowing. Mechanical transplanting of rice brought the highest net income 11 779.16 yuan/hm2, which was 1 697.72 and 3 631.84 yuan/hm2 higher than that of artificial throwing and artificial sowing. [Conclusion] Mechanical transplanting could promote rice productivity in Dongting Lake area, and could increase rice yields and economic returns.展开更多
[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high...[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high-yield winter wheat cultivar Jimai 22 as the experimental material, field experiment was conducted during 2008- 2010. A total of 3 planting patterns were designed, uniform row, wide-narrow row and furrow. Under each planting pattern, total four irrigation patterns were designed, no irrigation (Wo), irrigation at jointing state (Wl), irrigation at jointing and anthesis stages (W2) and irrigation at jointing, anthesis and milking stages (W3), and the irri- gation amount per treatment was all 60 mm. [Result] Under the three planting pat- terns, with the increased irrigation amount, the total water consumption of the exper- imental field increased; the proportion of irrigation in the total water consumption in- creased, and that of soil water consumption in the total water consumption de- creased significantly. Compared with W0 treatment, various irrigation treatments sig- nificantly increased the post-anthesis dry matter accumulation in wheat plants; with the increased irrigation amount, the grain yield under the three planting patterns all increased, while the water use efficiency (WUE) decreased. Under the same irriga- tion conditions, compared with other two planting patterns, furrow planting increased the total water consumption of the experimental field, increased the proportion of soil water consumption in the total water consumption, and improved the WUE and wheat grain yield. [Conclusion] Under the experimental conditions, considering both wheat grain yield and WUE, furrow planting with moderately deficit irrigation at joint- ing and anthesis stages is more suitable for the winter wheat production in North China Plain.展开更多
This paper reports a geomorphologic landscape investigation, vegetationsurvey and soil sampling at 14 sites across the Gurbantunggut Desert between87°37′09″-88°24′04″E and 44°14′04″-45°41′52...This paper reports a geomorphologic landscape investigation, vegetationsurvey and soil sampling at 14 sites across the Gurbantunggut Desert between87°37′09″-88°24′04″E and 44°14′04″-45°41′52″N. The study encountered 8 species of lowtrees and shrubs, 5 of perennial herbs, 8 of annual plants and 48 of ephemeral and ephemeroidplants. These species of plants represent one-third of the species found in the GurbantunggutDesert, and their communities make up a large proportion of desert vegetation with great landscapesignificance. In the investigation we found that the plant communities are accordingly succeededwith the spatial variation of macro-ecoenvironment. Using Principal Component Analysis (PCA) andCorrelation Analysis (CA) we found that the micro-ecoenvironment heterogeneity of aeolian sandysoil's physical and chemical properties such as soil nutrient, soil moisture, soil salt, pH etc.only impacted the diversity of herb synusia (PIEherb) of the desert, with a negative correlation.Meanwhile, the impact of microhabitat on the plant community pattern with an antagonisticinteraction made vegetation's eco-distribution in a temporary equilibrium.展开更多
The aim of this study was to elucidate the effects of different machine-harvested cotton-planting patterns on defoliation,yield,and fiber quality in cotton and to provide support for improving the quality of machine-h...The aim of this study was to elucidate the effects of different machine-harvested cotton-planting patterns on defoliation,yield,and fiber quality in cotton and to provide support for improving the quality of machine-harvested cotton.In the 2015 and 2016 growing seasons,the Xinluzao 45(XLZ45)and Xinluzao 62(XLZ62)cultivars,which are primarily cultivated in northern Xinjiang,were used as study materials.Conventional wide-narrow row(WNR),wide and ultra-narrow row(UNR),wide-row spacing with high density(HWR),and wide-row spacing with low density(LWR)planting patterns were used to assess the effects of planting patterns on defoliation,yield,and fiber quality.Compared with WNR,the seed cotton yields were significantly decreased by 2.06–5.48%for UNR and by 2.50–6.99%for LWR,respectively.The main cause of reduced yield was a reduction in bolls per unit area.The variation in HWR yield was–1.07–1.07%with reduced bolls per unit area and increased boll weight,thus demonstrating stable production.In terms of fiber quality indicators,the planting patterns only showed significant effects on the micronaire value,with wide-row spacing patterns showing an increase in the micronaire values.The defoliation and boll-opening results showed that the number of leaves and dried leaves in HWR was the lowest among the four planting patterns.Prior to the application of defoliating agent and before machine-harvesting,the numbers of leaves per individual plant in HWR were decreased by 14.45 and 25.00%on average,respectively,compared with WNR,while the number of leaves per unit area was decreased by 27.44 and 36.21%on average,respectively.The rates of boll-opening and defoliation in HWR were the highest.Specifically,the boll-opening rate before defoliation and machine-harvesting in HWR was 44.54 and 5.94%higher on average than in WNR,while the defoliation rate prior to machine-harvesting was 3.45%higher on average than in WNR.The numbers of ineffective defoliated leaves and leaf trash in HWR were the lowest,decreased by 33.40 and 32.43%,respectively,compared with WNR.In conclusion,the HWR planting pattern is associated with a high and stable yield,does not affect fiber quality,promotes early maturation,and can effectively decrease the amount of leaf trash in machine-picked seed cotton,and thus its use is able to improve the quality of machine-harvested cotton.展开更多
Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential respons...Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential responses of plants to the changes in rainfall regimes, such as rainfall intensity and duration, and length of dry intervals. In this study, we investigated the effects of different rainfall patterns(e.g. small rainfall event with high frequency and large rainfall event with low frequency) on biomass, growth characteristics and vertical distribution of root biomass of annual plants in Horqin Sandy Land, Inner Mongolia of China during the growing season(from May to August) of 2014. Our results showed that the rainfall patterns, independent of total rainfall amount, exerted strong effects on biomass, characteristics of plant growth and vertical distribution of root biomass. Under a constant amount of total rainfall, the aboveground biomass(AGB), belowground biomass(BGB), plant cover, plant height, and plant individual and species number increased with an increase in rainfall intensity. Changes in rainfall patterns also altered the percentage contribution of species biomass to the total AGB, and the percentage of BGB at different soil layers to the total BGB. Consequently, our results indicated that increased rainfall intensity in future may increase biomass significantly, and also affect the growth characteristics of annual plants.展开更多
During land transformation process in the human history, naturalized plants were introduced to several land use patterns by the different ways of plant itself. Including some naturalized plants that had been contribut...During land transformation process in the human history, naturalized plants were introduced to several land use patterns by the different ways of plant itself. Including some naturalized plants that had been contribute to land restoration, many naturalized plants have been invaded to original habitat or landscape for native plants. Once the plants were colonized, they extend their area and population size. Urban developed areas often give an important role of source habitat for naturalized plants and expanding their population size. In recent, this situation is appearing as one of environmental problems about the urban landscape management controlling the naturalized plants that invaded in the developed area and conserving the native vegetation. This paper is focusing on relationships between distribution of habitat of naturalized plants and landscape patch in urban area in Seoul. Gangdong-Gu, one of the administrative areas in Seoul was selected for this study. We examined the recent land use change using LANDSAT TM data and spreading of the representative naturalized plants (Robinia pseudoacacia and Eupatorium rugosum) by Seoul Biotope Mapping Project and field survey in 1999. As a result, these two species were often occurred in the same habitat and distributed in forest edge disturbed by man. Their distribution patterns were related to landscape indices (patch size and shape) in the forest edge.展开更多
[Objective] To screen ratooning rice varieties for the ratooning rice-rape cropping planting pattern in Ganfu Plain. [Method] The growth period, plant morphology, yield and its component of 11 varieties at the first a...[Objective] To screen ratooning rice varieties for the ratooning rice-rape cropping planting pattern in Ganfu Plain. [Method] The growth period, plant morphology, yield and its component of 11 varieties at the first and rebirth season were compared and analyzed. [Result] The ratooning rice varieties such as Heliangyou -1, Y Liangyou 6, Zhunliangyou 608 and Jingliangyouhuazhan were suitable for the production and application in Ganfu Plain. Heliangyou 1 and Zhunliangyou 608 showed the characteristics of early maturity, easy to achieve high yield and stable production. [Conclusion] It suggests that Heliangyou 1 and Zhunliangyou 608 should be selected as preferred varieties for the planting pattern of ratooning rice-rape cropping.展开更多
Understanding the photosynthetic characteristics of high-yield soybean[Glycine max(L.)Merr]cultivar(HYC)would aid research aiming at investigating the soybean high yield formation mechanism and optimization of cultiva...Understanding the photosynthetic characteristics of high-yield soybean[Glycine max(L.)Merr]cultivar(HYC)would aid research aiming at investigating the soybean high yield formation mechanism and optimization of cultivation system.To assess the photosynthesis of HYC,a pot experiment was conducted to quantify the differences in photosynthetic characteristics between HYC and common-yield soybean cultivar(CC)under different planting densities,fertilization rates,and single/mixed planting patterns.The leaf greenness(Lg),net photosynthetic rate(Ph),stomatal conductance(St)and transpiration rate(Tr)were significantly higher in HYC than CC mainly in seed-filling stages.HYC was more tolerant to dense and mixed planting because the decreases of Ph and St under high planting density and those of Ph,St,and Tr under mixed planting were lower in HYC than CC.The Lg and Ph in HYC were more superior to those in CC at high fertilization rate.Thus,the HYC has a superior performance in photosynthetic characteristics under the varied cultivation practices,which may contribute to the greater seed yield in HYC than CC.展开更多
An experiment was conducted on Fluvisols of Awassa for two consecutive years (2005-2006) to determine effects of planting pattern and plant density on dry matter accumulation, nodulation, protein and oil content in ...An experiment was conducted on Fluvisols of Awassa for two consecutive years (2005-2006) to determine effects of planting pattern and plant density on dry matter accumulation, nodulation, protein and oil content in early and late maturing soybean varieties. Results indicated that Awassa-95 variety produced significantly higher (P 〈 0.05) number of nodules/plant (NDN), nodule dry matter (NDM) and leaf dry matter (LDM at R2 (mid flowering) stage of soybean growth than that of variety Belessa-95). Similarly, variety Awassa-95 (45%) produced significantly higher protein content than variety Belessa-95 (40%). However, variety Belessa-95 accumulated significantly higher (P 〈 0.01) dry matter in straw, grain and total biomass at R7 (physiological maturity) stage of soybean growth than variety Awassa-95. Similarly, oil content of variety Belessa-95 (18.1%) was significantly (P 〈 0.05) higher than that of variety Awassa-95 (15.9%). Equidistant rows produced significantly higher (P 〈 0.05) NDM than either rectangular or paired rows. Moreover, soybean plants grown in both rectangular and equidistant rows produced significantly higher (P 〈 0.01) straw dry matter than those grown in paired rows; but, grain dry matter/plant (GDM) was significantly higher (P 〈 0.01) paired and rectangular rows compared to equidistant rows. Plant density also affected the per plant GDM production as it was significantly higher (P 〈 0.01) in 20 and 30 plants/m2 than higher plant densities (40 and 50 plants/m2). However, dry matter and yield components had strong negative association with protein content. In fact, strong positive correlation (R 〉 0.600) occurred between grain yield and its components with dry matter components at R2 (stem dry matter (SDM), leaf dry matter (LDM) and stem + nodule + leaf dry matter together known as TDM) and straw dry matter at R7 in both varieties. This study depicted that soybean plants that produce higher dry matter components at R2 would probably produce more straw dry matter, greater grain yield components and higher grain yield dry matter at later stages.展开更多
[Objectives]This study was conducted to investigate the effect of different planting patterns on soil improvement in rocky desertification areas.[Methods]The one-way ANOVA analysis method was used to statistically ana...[Objectives]This study was conducted to investigate the effect of different planting patterns on soil improvement in rocky desertification areas.[Methods]The one-way ANOVA analysis method was used to statistically analyze the soil physical and chemical properties,enzyme activity,microbial quantity,CEC,ECEC,and aggregate content distribution with different planting patterns.[Results]The walnut+sesame+mung bean planting pattern showed the highest soil available phosphorus,available potassium,porosity,non-capillary porosity,and contents of free living nitrogen-fixing bacteria,organophosphate-dissolving bacteria,bacteria,fungi and actinomycetes,at 63.2 mg/kg,178.8 mg/kg,22.85%,6.89%,10.0×10^6 bacteria/g,18.0×10^6 bacteria/g,21.0×10^5 CFU/g,5.7×10^3 CFU/g and 7.9×10^5 CFU/g,respectively,and it reduced soil bulk density(the same as treatment F and treatment E)compared with other planting patterns.The walnut+American chicory+sweet potato planting pattern had the highest alkali-hydrolyzale nitrogen,organic matter,CEC,ECEC,water-air ratio and moisture content,which were 227.9 mg/kg,46.30 g/kg,36.38 cmol/kg,24.00 cmol/kg,8.13,and 32.89%,respectively,and it reduced soil bulk density,increased capillary porosity,acid phosphatase,and contents of bacteria and actinomycetes compared with single cropping of walnut.[Conclusions]Interplanting crops under walnut forests is an effective measure to improve the ecological environment of rocky desertification farmland.展开更多
Ten runoff plots with different planting patterns were established for experimental observation in Yangjichong small watershed of Longli County in Karst region of Guizhou Province. Results show that under the same rai...Ten runoff plots with different planting patterns were established for experimental observation in Yangjichong small watershed of Longli County in Karst region of Guizhou Province. Results show that under the same rainfall condition, shrub land, natural grassland and abandoned land presented the best function of soil and water conservation. The function of soil and water conservation was poor for arbor planting pattern, because the shrub layer, herb layer and forest floor were not formed. Because of no-tillage, surface crust and other effects, the function of soil and water conservation in slope farmland was better than that in runoffplots with arbor planting pattern.展开更多
The spatial pattern of urban waterfront landscape is an important factor affecting the quality of urban culture and improving the recognition of the city.As the core material of urban landscape design,garden plants pl...The spatial pattern of urban waterfront landscape is an important factor affecting the quality of urban culture and improving the recognition of the city.As the core material of urban landscape design,garden plants play a very important role in the construction of spatial pattern of urban waterfront landscape.The spatial pattern of garden plant landscape can be divided into three types:two-dimensional,vertical and special.The two-dimensional spatial pattern focuses on the construction of"meaning and form".The vertical spatial pattern focuses on the construction of"image".The special spatial pattern of garden plants focuses on the construction of"artistic conception".The three types are used to create a spatial pattern of urban waterfront landscape with rich spatial and temporal changes and artistic connotation.展开更多
The differences in satellite DNA methylation pattern of corn seedlings with various spontaneous chromosome aberration yields and changes in methylation pattern of these DNA sequences under different exposure modes of ...The differences in satellite DNA methylation pattern of corn seedlings with various spontaneous chromosome aberration yields and changes in methylation pattern of these DNA sequences under different exposure modes of acute UV-C and chronic gamma-irradiations have been investigated. The obtained experimental data and the conducted correlation analysis demonstrated the significant correlation between the satellite DNA methylation pattern varieties and chromosome aberration yields under various stress exposure modes. The role of satellite DNA methylation pattern variability and its changing in key responses to stress such as mobile elements’ activation, cell’s passage of checkpoints, and homological repair was discussed.展开更多
基金carried out in the framework of the 1331 Project of Cultural Ecology Collaborative Innovation Center in Wutai Mountain (00000342)co-financed by Program for the Philosophy and Social Sciences Research of Higher Learning Institutions of Shanxi (2022J027)+1 种基金Applied Basic Research Project of Shanxi Province (202203021221225)Basic Research Project of Xinzhou Science and Technology Bureau (20230501)。
文摘Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.
基金Supported by Special Fund of Sichuan Financial Genetic Engineering(2011QNJJ-019)Science and Technology Support Program of Sichuan Province(2011NZ0068)"12th Five-Year Plan" Breeding Project of Crops and Livestock of Sichuan Province(2011NZ0098-15)~~
文摘[Objective] The aim was to make full use of light-heat resources to expand the potato planting area on the base of ensuring the production of main grain crops and the limited arable land. [Methods] Through catch crops, multiple cropping and intercropping, new multiple planting patterns of potato with efficiency are constructed, for the purpose of increasing yield and benefit of potato. [Result] In irrigated plain and hill area, three new planting patterns such as autumn potato/rope-rice,winter potato-rice-autumn potato, and autumn(winter) potato-rice were constructed.In dry land of plain and hill area, three new planting patterns such as spring(winter)potato/maize/sweet potato, spring(winter) potato/maize-autumn potato, and wheat + winter potato/maize/sweet potato were constructed. In plateau mountainous area, spring potato/maize was constructed. [Conclusion] With use of new planting patterns, the cropping index of new patterns was 200%-300%, while the accumulated temperature utilization was 68.9%-93.4%, light energy utilization was 0.98%-1.59% and straw utilization was 50%-100%. To compared with traditional planting patterns, the yield increased by 2.6%-93%, and benefit increased by 15.8%-284.3%. Furthermore,multiple planting patterns of potato have become main planting patterns in increasing yield and income in Sichuan.
文摘[Objective] This study aimed to investigate the effects of cultivation methods on rice yield and economic benefits in the Dongting Lake area. [Method] A field plot experiment was conducted by adopting three different planting patterns of artificial sowing, artificial throwing and mechanical transplanting. [Result] Rice yield of mechanical transplanting was 7.84% and 24.19% higher respectively than that of artificial sowing and artificial throwing. The effective panicles per unit area of mechanical transplanting and artificial throwing were less than that of artificial sowing. On the contrary, grains per spike, 1 000-grain weight and seed setting rate of mechanical transplanting and artificial throwing were less than those of artificial sowing. Mechanical transplanting of rice brought the highest net income 11 779.16 yuan/hm2, which was 1 697.72 and 3 631.84 yuan/hm2 higher than that of artificial throwing and artificial sowing. [Conclusion] Mechanical transplanting could promote rice productivity in Dongting Lake area, and could increase rice yields and economic returns.
基金Supported by Scientific and Technological Development Plan of Shandong Province(2014GNC113001)Open Fund for National Key Laboratory of Crop Biology(2014KF11)
文摘[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high-yield winter wheat cultivar Jimai 22 as the experimental material, field experiment was conducted during 2008- 2010. A total of 3 planting patterns were designed, uniform row, wide-narrow row and furrow. Under each planting pattern, total four irrigation patterns were designed, no irrigation (Wo), irrigation at jointing state (Wl), irrigation at jointing and anthesis stages (W2) and irrigation at jointing, anthesis and milking stages (W3), and the irri- gation amount per treatment was all 60 mm. [Result] Under the three planting pat- terns, with the increased irrigation amount, the total water consumption of the exper- imental field increased; the proportion of irrigation in the total water consumption in- creased, and that of soil water consumption in the total water consumption de- creased significantly. Compared with W0 treatment, various irrigation treatments sig- nificantly increased the post-anthesis dry matter accumulation in wheat plants; with the increased irrigation amount, the grain yield under the three planting patterns all increased, while the water use efficiency (WUE) decreased. Under the same irriga- tion conditions, compared with other two planting patterns, furrow planting increased the total water consumption of the experimental field, increased the proportion of soil water consumption in the total water consumption, and improved the WUE and wheat grain yield. [Conclusion] Under the experimental conditions, considering both wheat grain yield and WUE, furrow planting with moderately deficit irrigation at joint- ing and anthesis stages is more suitable for the winter wheat production in North China Plain.
基金Xinjiang Uygur Autonomous Region′s Natural Science Foundation Project,The special support project from the Director′s fund of the Xinjiang Institute of Ecology and Geology,国家自然科学基金
文摘This paper reports a geomorphologic landscape investigation, vegetationsurvey and soil sampling at 14 sites across the Gurbantunggut Desert between87°37′09″-88°24′04″E and 44°14′04″-45°41′52″N. The study encountered 8 species of lowtrees and shrubs, 5 of perennial herbs, 8 of annual plants and 48 of ephemeral and ephemeroidplants. These species of plants represent one-third of the species found in the GurbantunggutDesert, and their communities make up a large proportion of desert vegetation with great landscapesignificance. In the investigation we found that the plant communities are accordingly succeededwith the spatial variation of macro-ecoenvironment. Using Principal Component Analysis (PCA) andCorrelation Analysis (CA) we found that the micro-ecoenvironment heterogeneity of aeolian sandysoil's physical and chemical properties such as soil nutrient, soil moisture, soil salt, pH etc.only impacted the diversity of herb synusia (PIEherb) of the desert, with a negative correlation.Meanwhile, the impact of microhabitat on the plant community pattern with an antagonisticinteraction made vegetation's eco-distribution in a temporary equilibrium.
基金supported by the National Natural Science Foundation of China (31560342)the Major Science and Technology Projects of Xinjiang Production and Construction Corps, China (2016AA001-2)the National Key Research and Development Program of China (2017YFD0201900)
文摘The aim of this study was to elucidate the effects of different machine-harvested cotton-planting patterns on defoliation,yield,and fiber quality in cotton and to provide support for improving the quality of machine-harvested cotton.In the 2015 and 2016 growing seasons,the Xinluzao 45(XLZ45)and Xinluzao 62(XLZ62)cultivars,which are primarily cultivated in northern Xinjiang,were used as study materials.Conventional wide-narrow row(WNR),wide and ultra-narrow row(UNR),wide-row spacing with high density(HWR),and wide-row spacing with low density(LWR)planting patterns were used to assess the effects of planting patterns on defoliation,yield,and fiber quality.Compared with WNR,the seed cotton yields were significantly decreased by 2.06–5.48%for UNR and by 2.50–6.99%for LWR,respectively.The main cause of reduced yield was a reduction in bolls per unit area.The variation in HWR yield was–1.07–1.07%with reduced bolls per unit area and increased boll weight,thus demonstrating stable production.In terms of fiber quality indicators,the planting patterns only showed significant effects on the micronaire value,with wide-row spacing patterns showing an increase in the micronaire values.The defoliation and boll-opening results showed that the number of leaves and dried leaves in HWR was the lowest among the four planting patterns.Prior to the application of defoliating agent and before machine-harvesting,the numbers of leaves per individual plant in HWR were decreased by 14.45 and 25.00%on average,respectively,compared with WNR,while the number of leaves per unit area was decreased by 27.44 and 36.21%on average,respectively.The rates of boll-opening and defoliation in HWR were the highest.Specifically,the boll-opening rate before defoliation and machine-harvesting in HWR was 44.54 and 5.94%higher on average than in WNR,while the defoliation rate prior to machine-harvesting was 3.45%higher on average than in WNR.The numbers of ineffective defoliated leaves and leaf trash in HWR were the lowest,decreased by 33.40 and 32.43%,respectively,compared with WNR.In conclusion,the HWR planting pattern is associated with a high and stable yield,does not affect fiber quality,promotes early maturation,and can effectively decrease the amount of leaf trash in machine-picked seed cotton,and thus its use is able to improve the quality of machine-harvested cotton.
基金supported by the Strategic Leading Science and Technology Projects of Chinese Academy of Sciences (XDA05050201-04-01)the National Natural Science Foundation of China (41371053, 31500369)the ‘One Hundred Talent’ Program of Chinese Academy of Sciences (Y451H31001)
文摘Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential responses of plants to the changes in rainfall regimes, such as rainfall intensity and duration, and length of dry intervals. In this study, we investigated the effects of different rainfall patterns(e.g. small rainfall event with high frequency and large rainfall event with low frequency) on biomass, growth characteristics and vertical distribution of root biomass of annual plants in Horqin Sandy Land, Inner Mongolia of China during the growing season(from May to August) of 2014. Our results showed that the rainfall patterns, independent of total rainfall amount, exerted strong effects on biomass, characteristics of plant growth and vertical distribution of root biomass. Under a constant amount of total rainfall, the aboveground biomass(AGB), belowground biomass(BGB), plant cover, plant height, and plant individual and species number increased with an increase in rainfall intensity. Changes in rainfall patterns also altered the percentage contribution of species biomass to the total AGB, and the percentage of BGB at different soil layers to the total BGB. Consequently, our results indicated that increased rainfall intensity in future may increase biomass significantly, and also affect the growth characteristics of annual plants.
文摘During land transformation process in the human history, naturalized plants were introduced to several land use patterns by the different ways of plant itself. Including some naturalized plants that had been contribute to land restoration, many naturalized plants have been invaded to original habitat or landscape for native plants. Once the plants were colonized, they extend their area and population size. Urban developed areas often give an important role of source habitat for naturalized plants and expanding their population size. In recent, this situation is appearing as one of environmental problems about the urban landscape management controlling the naturalized plants that invaded in the developed area and conserving the native vegetation. This paper is focusing on relationships between distribution of habitat of naturalized plants and landscape patch in urban area in Seoul. Gangdong-Gu, one of the administrative areas in Seoul was selected for this study. We examined the recent land use change using LANDSAT TM data and spreading of the representative naturalized plants (Robinia pseudoacacia and Eupatorium rugosum) by Seoul Biotope Mapping Project and field survey in 1999. As a result, these two species were often occurred in the same habitat and distributed in forest edge disturbed by man. Their distribution patterns were related to landscape indices (patch size and shape) in the forest edge.
文摘[Objective] To screen ratooning rice varieties for the ratooning rice-rape cropping planting pattern in Ganfu Plain. [Method] The growth period, plant morphology, yield and its component of 11 varieties at the first and rebirth season were compared and analyzed. [Result] The ratooning rice varieties such as Heliangyou -1, Y Liangyou 6, Zhunliangyou 608 and Jingliangyouhuazhan were suitable for the production and application in Ganfu Plain. Heliangyou 1 and Zhunliangyou 608 showed the characteristics of early maturity, easy to achieve high yield and stable production. [Conclusion] It suggests that Heliangyou 1 and Zhunliangyou 608 should be selected as preferred varieties for the planting pattern of ratooning rice-rape cropping.
基金National Natural Science Foundation of China(31260310)Science and Technology Reserve Project of Inner Mongolia Autonomous Region(2018MDCB02).
文摘Understanding the photosynthetic characteristics of high-yield soybean[Glycine max(L.)Merr]cultivar(HYC)would aid research aiming at investigating the soybean high yield formation mechanism and optimization of cultivation system.To assess the photosynthesis of HYC,a pot experiment was conducted to quantify the differences in photosynthetic characteristics between HYC and common-yield soybean cultivar(CC)under different planting densities,fertilization rates,and single/mixed planting patterns.The leaf greenness(Lg),net photosynthetic rate(Ph),stomatal conductance(St)and transpiration rate(Tr)were significantly higher in HYC than CC mainly in seed-filling stages.HYC was more tolerant to dense and mixed planting because the decreases of Ph and St under high planting density and those of Ph,St,and Tr under mixed planting were lower in HYC than CC.The Lg and Ph in HYC were more superior to those in CC at high fertilization rate.Thus,the HYC has a superior performance in photosynthetic characteristics under the varied cultivation practices,which may contribute to the greater seed yield in HYC than CC.
文摘An experiment was conducted on Fluvisols of Awassa for two consecutive years (2005-2006) to determine effects of planting pattern and plant density on dry matter accumulation, nodulation, protein and oil content in early and late maturing soybean varieties. Results indicated that Awassa-95 variety produced significantly higher (P 〈 0.05) number of nodules/plant (NDN), nodule dry matter (NDM) and leaf dry matter (LDM at R2 (mid flowering) stage of soybean growth than that of variety Belessa-95). Similarly, variety Awassa-95 (45%) produced significantly higher protein content than variety Belessa-95 (40%). However, variety Belessa-95 accumulated significantly higher (P 〈 0.01) dry matter in straw, grain and total biomass at R7 (physiological maturity) stage of soybean growth than variety Awassa-95. Similarly, oil content of variety Belessa-95 (18.1%) was significantly (P 〈 0.05) higher than that of variety Awassa-95 (15.9%). Equidistant rows produced significantly higher (P 〈 0.05) NDM than either rectangular or paired rows. Moreover, soybean plants grown in both rectangular and equidistant rows produced significantly higher (P 〈 0.01) straw dry matter than those grown in paired rows; but, grain dry matter/plant (GDM) was significantly higher (P 〈 0.01) paired and rectangular rows compared to equidistant rows. Plant density also affected the per plant GDM production as it was significantly higher (P 〈 0.01) in 20 and 30 plants/m2 than higher plant densities (40 and 50 plants/m2). However, dry matter and yield components had strong negative association with protein content. In fact, strong positive correlation (R 〉 0.600) occurred between grain yield and its components with dry matter components at R2 (stem dry matter (SDM), leaf dry matter (LDM) and stem + nodule + leaf dry matter together known as TDM) and straw dry matter at R7 in both varieties. This study depicted that soybean plants that produce higher dry matter components at R2 would probably produce more straw dry matter, greater grain yield components and higher grain yield dry matter at later stages.
基金Guangxi Innovation-driven Development Project(GK AA17204058-16)Guangxi Science and Technology Planning Project(GKG 1598016-13)Basic Scientific and Research Program of Guangxi Academy of Agricultural Sciences(GNK 2021YT041,GNK 2019ZX126)。
文摘[Objectives]This study was conducted to investigate the effect of different planting patterns on soil improvement in rocky desertification areas.[Methods]The one-way ANOVA analysis method was used to statistically analyze the soil physical and chemical properties,enzyme activity,microbial quantity,CEC,ECEC,and aggregate content distribution with different planting patterns.[Results]The walnut+sesame+mung bean planting pattern showed the highest soil available phosphorus,available potassium,porosity,non-capillary porosity,and contents of free living nitrogen-fixing bacteria,organophosphate-dissolving bacteria,bacteria,fungi and actinomycetes,at 63.2 mg/kg,178.8 mg/kg,22.85%,6.89%,10.0×10^6 bacteria/g,18.0×10^6 bacteria/g,21.0×10^5 CFU/g,5.7×10^3 CFU/g and 7.9×10^5 CFU/g,respectively,and it reduced soil bulk density(the same as treatment F and treatment E)compared with other planting patterns.The walnut+American chicory+sweet potato planting pattern had the highest alkali-hydrolyzale nitrogen,organic matter,CEC,ECEC,water-air ratio and moisture content,which were 227.9 mg/kg,46.30 g/kg,36.38 cmol/kg,24.00 cmol/kg,8.13,and 32.89%,respectively,and it reduced soil bulk density,increased capillary porosity,acid phosphatase,and contents of bacteria and actinomycetes compared with single cropping of walnut.[Conclusions]Interplanting crops under walnut forests is an effective measure to improve the ecological environment of rocky desertification farmland.
文摘Ten runoff plots with different planting patterns were established for experimental observation in Yangjichong small watershed of Longli County in Karst region of Guizhou Province. Results show that under the same rainfall condition, shrub land, natural grassland and abandoned land presented the best function of soil and water conservation. The function of soil and water conservation was poor for arbor planting pattern, because the shrub layer, herb layer and forest floor were not formed. Because of no-tillage, surface crust and other effects, the function of soil and water conservation in slope farmland was better than that in runoffplots with arbor planting pattern.
基金Supported by Science and Technology Project of Jiangxi Provincial Department of Education
文摘The spatial pattern of urban waterfront landscape is an important factor affecting the quality of urban culture and improving the recognition of the city.As the core material of urban landscape design,garden plants play a very important role in the construction of spatial pattern of urban waterfront landscape.The spatial pattern of garden plant landscape can be divided into three types:two-dimensional,vertical and special.The two-dimensional spatial pattern focuses on the construction of"meaning and form".The vertical spatial pattern focuses on the construction of"image".The special spatial pattern of garden plants focuses on the construction of"artistic conception".The three types are used to create a spatial pattern of urban waterfront landscape with rich spatial and temporal changes and artistic connotation.
文摘The differences in satellite DNA methylation pattern of corn seedlings with various spontaneous chromosome aberration yields and changes in methylation pattern of these DNA sequences under different exposure modes of acute UV-C and chronic gamma-irradiations have been investigated. The obtained experimental data and the conducted correlation analysis demonstrated the significant correlation between the satellite DNA methylation pattern varieties and chromosome aberration yields under various stress exposure modes. The role of satellite DNA methylation pattern variability and its changing in key responses to stress such as mobile elements’ activation, cell’s passage of checkpoints, and homological repair was discussed.