Biological macromolecules, such as proteins and polysaccharides, are widely used in food systems because their interactions impart a desirable texture to food products. Plant proteins interact with food components via...Biological macromolecules, such as proteins and polysaccharides, are widely used in food systems because their interactions impart a desirable texture to food products. Plant proteins interact with food components via protein-protein and protein-polysaccharide associations, and the formation of a matrix, which can entrap other food components such as water, lipids and flavors. These networks provide structural integrity to food products and can serve as important functional ingredients in processed foods. Intermolecular interactions of typical polysaccharides result either in simple associations or in the form of a double or triple helix. The linear double helical segments may then interact to form a super junction and a three-dimensional gel network. The formation of these structural networks takes place during processing and involves the transformation from a liquid or viscous sol into a solid material with elastic properties. Interests in the behavior of mixed gels center on the prospects of enhanced flexibility in their mechanical and structural properties compared to those of pure gels. Findings on molecular interactions between plant proteins (e.g., soy, canola and pea proteins) and polysaccharides (e.g., guar gum, carrageenan, and pectin) allow for the modification of physical and textural characteristics of mixed biopolymers to meet desired functional property.展开更多
The intestinal mucus barrier is an important line of defense against gut pathogens.Damage to this barrier brings bacteria into close contact with the epithelium,leading to intestinal inflammation.Therefore,its restora...The intestinal mucus barrier is an important line of defense against gut pathogens.Damage to this barrier brings bacteria into close contact with the epithelium,leading to intestinal inflammation.Therefore,its restoration is a promising strategy for alleviating intestinal inflammation.This study showed that Abelmoschus manihot polysaccharide(AMP)fortifies the intestinal mucus barrier by increasing mucus production,which plays a crucial role in the AMP-mediated amelioration of colitis.IL-10-deficient mouse models demonstrated that the effect of AMP on mucus production is dependent on IL-10.Moreover,bacterial depletion and replenishment confirmed that the effects of AMP on IL-10 secretion and mucus production were mediated by Akkermansia muciniphila.These findings suggest that plant polysaccharides fortify the intestinal mucus barrier by maintaining homeostasis in the gut microbiota.This demonstrates that targeting mucus barrier is a promising strategy for treating intestinal inflammation.展开更多
文摘Biological macromolecules, such as proteins and polysaccharides, are widely used in food systems because their interactions impart a desirable texture to food products. Plant proteins interact with food components via protein-protein and protein-polysaccharide associations, and the formation of a matrix, which can entrap other food components such as water, lipids and flavors. These networks provide structural integrity to food products and can serve as important functional ingredients in processed foods. Intermolecular interactions of typical polysaccharides result either in simple associations or in the form of a double or triple helix. The linear double helical segments may then interact to form a super junction and a three-dimensional gel network. The formation of these structural networks takes place during processing and involves the transformation from a liquid or viscous sol into a solid material with elastic properties. Interests in the behavior of mixed gels center on the prospects of enhanced flexibility in their mechanical and structural properties compared to those of pure gels. Findings on molecular interactions between plant proteins (e.g., soy, canola and pea proteins) and polysaccharides (e.g., guar gum, carrageenan, and pectin) allow for the modification of physical and textural characteristics of mixed biopolymers to meet desired functional property.
基金the National Natural Science Foundation of China(82074136)High level key discipline construction project of the National Administration of Traditional Chinese Medicine-Resource Chemistry of Chinese Medicinal Materials(No.zyyzdxk-2023083,China).
文摘The intestinal mucus barrier is an important line of defense against gut pathogens.Damage to this barrier brings bacteria into close contact with the epithelium,leading to intestinal inflammation.Therefore,its restoration is a promising strategy for alleviating intestinal inflammation.This study showed that Abelmoschus manihot polysaccharide(AMP)fortifies the intestinal mucus barrier by increasing mucus production,which plays a crucial role in the AMP-mediated amelioration of colitis.IL-10-deficient mouse models demonstrated that the effect of AMP on mucus production is dependent on IL-10.Moreover,bacterial depletion and replenishment confirmed that the effects of AMP on IL-10 secretion and mucus production were mediated by Akkermansia muciniphila.These findings suggest that plant polysaccharides fortify the intestinal mucus barrier by maintaining homeostasis in the gut microbiota.This demonstrates that targeting mucus barrier is a promising strategy for treating intestinal inflammation.