Background Mepiquat chloride(MC)application and plant population density(PPD)increasing are required for modern cotton production.However,their interactive effects on leaf physiology and carbohydrate metabolism remain...Background Mepiquat chloride(MC)application and plant population density(PPD)increasing are required for modern cotton production.However,their interactive effects on leaf physiology and carbohydrate metabolism remain obscure.This study aimed to examine whether and how MC and PPD affect the leaf morpho-physiological characteristics,and thus final cotton yield.PPD of three levels(D1:2.25 plants·m^(-2),D2:4.5 plants·m^(-2),and D3:6.75 plants·m^(-2))and MC dosage of two levels(MC0:0 g·ha^(-2),MC1:82.5 g·ha^(-2))were combined to create six treatments.The dynamics of nonstructual carbohydrate concentration,carbon metabolism-related enzyme activity,and photosynthetic attributes in cotton leaves were examined during reproductive growth in 2019 and 2020.Results Among six treatments,the high PPD of 6.75 plants·m^(-2)combined with MC application(MC1D3)exhibited the greatest seed cotton yield and biological yield.The sucrose,hexose,starch,and total nonstructural carbohydrate(TNC)concentrations peaked at the first flowering(FF)stage and then declined to a minimum at the first boll opening(FBO)stage.Compared with other treatments,MC1D3 improved starch and TNC concentration by 5.4%~88.4%,7.8%~52.0% in 2019,and by 14.6%~55.9%,13.5%~39.7% in 2020 at the FF stage,respectively.Additionally,MC1D3 produced higher transformation rates of starch and TNC from the FF to FBO stages,indicating greater carbon production and utilization efficiency.MC1D3 displayed the maximal specific leaf weight(SLW)at the FBO stage,and the highest chlorophyll a(Chl a),Chl b,and Chl a+b concentration at the mid-late growth phase in both years.The Rubisco activity with MC1D3 was 2.6%~53.2% higher at the flowering and boll setting stages in both years,and 2.4%~52.7% higher at the FBO stage in 2020 than those in other treatments.These results provided a explanation of higher leaf senescence-resistant ability in MC1D3.Conclusion Increasing PPD coupled with MC application improves cotton yield by enhancing leaf carbohydrate production and utilization efficiency and delaying leaf senescence.展开更多
The effects of nitrogen, phosphorus and potassium application level, seed rate and transplanting density on the growth and development of rice plants were studied to find out nutrient status in high-yielding rice plan...The effects of nitrogen, phosphorus and potassium application level, seed rate and transplanting density on the growth and development of rice plants were studied to find out nutrient status in high-yielding rice plants and to increase grain yield by adequate fertilization. There was an equilibrium relationship among nutrient elements for high-yielding rice plant populations. The equilibrium index of nutrient amount, content and distribution in high-yielding rice plants should be generally greater than-2 but less than 2. The optimum nutritive proportion of nitrogen: phosphorus: potassium assimilated by the plants was about 10: 2: 9 at the ripening stage. But the content and the proportion varied with the growth stages. Therefore, the nutrient in rice plant populations should be in a dynamic equilibrium, so as to achieve high yield.展开更多
Rice production in Pakistan is constraint by many factors pertaining to prevalent planting techniques. A research on the feasibility of new planting techniques (direct seeding on flat, transplanting on flat, direct s...Rice production in Pakistan is constraint by many factors pertaining to prevalent planting techniques. A research on the feasibility of new planting techniques (direct seeding on flat, transplanting on flat, direct seeding on ridges, transplanting on ridges and parachute planting) in transplanted and direct wet-seeded rice was undertaken at Dera Ismail Khan region of Pakistan's North West Frontier Province during 2002 and 2003. Among the planting techniques, the best performance for the yield formation and economic evaluation was noted for transplanting on flat during both years. Chinese parachute planting technology also showed very promising results in most of the parameters. Direct seeding on ridges could not excel transplanting on flat and parachute planting during both cropping seasons. The findings concluded the feasibility of parachute planting technology along with traditional rice transplanting on flat over all other planting techniques being practiced in the area.展开更多
Current arable land and increasing food demand necessitates the practice of double and multiple cropping systems with inclusion of ultra-fast maize hybrids, which are characterized by smaller size, fewer leaves per pl...Current arable land and increasing food demand necessitates the practice of double and multiple cropping systems with inclusion of ultra-fast maize hybrids, which are characterized by smaller size, fewer leaves per plant, lower leaf area and fewer self-shading problems, under irrigation. In this context, a field experiment was conducted for two successive cropping seasons 2008/2009 to 2009/2010 at Kenilworth Experimental Station to evaluate the effect of row spacings and plant density on growth. Three row spacing (0.225, 0.45 and 0.90 m) and five plant densities (5, 7.5, 10, 12.5 and 15 plants m^-2) were used. Treatments were combined in a factorial combination and laid out in a completely randomized design with replications consisting of five single plants randomly selected from each treatment for destructive sampling. Growth factors reacted differently to row spacing by plant density. At crop establishment, growth indicators were not significantly affected by either main effects or a combination thereof. However, at the end of the vegetative phase, almost all growth indicators reached a maximum and were significantly affected by treatment interactions. Growth analysis showed that there was an interaction effect of row spacing by plant density on plant height, dry matter (DM) accumulation, leaf area index (LAI), crop growth rate (CGR) and net assimilation rate (NAR) of maize. Therefore, the current investigation demonstrated that a row spacing of 0.45 m or 0.90 m with a plant density of 10 plants m^-2 was optimum for the selected ultra-fast maize hybrid under irrigation.展开更多
Manglietia ventii is a wild plant species with extremely small populations endemic to Yunnan,mainly distributed in southeast Yunnan.Due to the continuous deterioration of natural habitats,excessive felling and utiliza...Manglietia ventii is a wild plant species with extremely small populations endemic to Yunnan,mainly distributed in southeast Yunnan.Due to the continuous deterioration of natural habitats,excessive felling and utilization of human beings,and the decline of breeding ability,the number of individuals in the population has decreased significantly.Through field investigation and literature review,the research status of M.ventii in systematics,conservation ecology,reproductive biology,genetic diversity,endangered mechanism and resource protection at home and abroad are systematically reviewed.And the future research direction is prospected.It is necessary to strengthen the research on the basic characteristics of M.ventii,explore the transmission route of M.ventii and deepen the development and utilization of resources,in order to provide a theoretical support for the protection and sustainable utilization of germplasm resources of M.ventii,and provide a reference for the protection of other wild plant species with extremely small populations.展开更多
Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic ...Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P 〈 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P 〈 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P 〈 0.001), as well as 72.59% variation within populations (P 〈 0.001). Molecular variation within populations was significantly different among 16 populations.展开更多
Insect infestation, soil moisture, and yield were examined in populations of≈33 140 plants/ha (low) and ≈ 40 340 plants/ha (high) of an oilseed sunflower, Helianthus annuus L, cv. ' Triumph 660CL' with two lev...Insect infestation, soil moisture, and yield were examined in populations of≈33 140 plants/ha (low) and ≈ 40 340 plants/ha (high) of an oilseed sunflower, Helianthus annuus L, cv. ' Triumph 660CL' with two levels of weediness. Less weedy plots resulted from the application of herbicide combination of S-metolachlor and sulfentrazone, whereas more weedy plots resulted from application of sulfentrazone alone. Among the 12 weed species recorded, neither plant numbers nor biomass differed between crop plant densities. Larvae of the stalk-boring insects Cylindrocopturus adspersus (Coleoptera: Curculionidae) and Mordellistena sp. (Coleoptera: Mordellidae) were less abundant in high density sunflowers, ostensibly due to reduced plant size. However, the same effect was not observed for Dectes texanus (Coleoptera: Cerambycidae) or Pelochrista womanana (Lepidoptera: Tortricidae), two other stalk-boring insects. Soil moisture was highest in low density and lowest in the high density sunflowers that were less weedy. Stalk circumference, head diameter, and seed weight were reduced for sunflower plants with short interplant distances (mean = 20 cm apart) compared to plants with long interplant distances (mean = 46 cm apart). These three variables were greater in less weedy plots compared with more weedy plot〉 and positively correlated with interplant distance. Yields on a per-hectare basis paralleled those on a per-plant basis but were not different among treatments. The agronomic implications of planting density are discussed in the context of weed and insect management.展开更多
In recent years,the protection of PSESP has gradually become a hot issue in biodiversity research.Through the investigation and analysis of PSESP in Xinjiang,it is shown that:①there are 75 species of PSESP in Xinjian...In recent years,the protection of PSESP has gradually become a hot issue in biodiversity research.Through the investigation and analysis of PSESP in Xinjiang,it is shown that:①there are 75 species of PSESP in Xinjiang,including 22 species of trees,18 species of shrubs and 35 species of herbs.The habitats are mainly in extremely cold,extremely dry or extremely narrow conditions such as snow line,desert,mountain,wetland and so on.②53 species(70.67%)are listed as national or autonomous region protected plants,and 22 species of PSESP are not listed in the protection;there are 70 species of PSESP listed in the red list,accounting for 93.33%.③The PSESP in Xinjiang are mainly distributed in the Altai Mountains,western Tianshan Mountains,Pamir Plateau and Karakoram Mountains;they are distributed in all kinds of nature reserves,forest parks,wetland parks and other natural ecological protection areas in Xinjiang.Ammopiptanthus nanus(M.Pop.)Cheng F.,Cistanche tubulosa(Schenk)Wight,Calligonum roborovskii A.Los.and Prunus cerasifera Ehrhart have not been found in the literature,indicating that they are distributed in protected areas.In order to provide a theoretical basis for the conservation of biodiversity in Xinjiang,this paper puts forward some suggestions on the protection of PSESP.展开更多
Field experiments were carried out in northern Zhejiang Province. Three insecticides (methamidophos,Shachongshuang and triazophos) were used to control the rice leaffolder Cnaphalocrocis medinalis and rice striped ste...Field experiments were carried out in northern Zhejiang Province. Three insecticides (methamidophos,Shachongshuang and triazophos) were used to control the rice leaffolder Cnaphalocrocis medinalis and rice striped stemborer Chilo suppressalis in rice fields during 18—27 days after transplantating. The impacts of timing and insecticides on the population development of brown planthopper Nilaparavata lugens was surveyed by direct counting on the plants or by tapping method.展开更多
Spatial heterogeneity is a ubiquitous feature in natural ecosystems, especially in arid regions. Different species and their discontinuous distribution, accompanied by varied topographic characteristics, result in soi...Spatial heterogeneity is a ubiquitous feature in natural ecosystems, especially in arid regions. Different species and their discontinuous distribution, accompanied by varied topographic characteristics, result in soil resources distributed differently in different locations, and present significant spatial heterogeneity in desert ecosystems. In this study, conventional and geostatistical methods were used to identify the heterogeneity of soil chemical properties in two desert populations, Haloxylon persicum Bunge ex Boss., which dominates on the slopes and tops of sand dunes and Haloxylon ammodendron (C. A. Mey.) Bunge, which inhabits interdunes in the Gurbantunggut Desert of Xinjiang, China. The results showed that soil pH, electrical conductivity (EC), soil organic carbon (SOC), available nitrogen (AN) and available phosphorus (AP) were significantly higher in H. ammodendron populations than that in H. persicum. The coefficient of variation (CV) indicated that (1) most parameters presented a moderate degree of variability (10% 【 CV 【 100%) except pH in both plots, (2) the variability of soil pH, EC and AP in H. ammodendron populations was higher than that in H. persicum populations, and (3) SOC and AN in H. ammodendron populations were lower than that in H. persicum populations. Geostatistical analysis revealed a strong spatial dependence (C0/(C0+C) 【 25%) within the distance of ranges for all tested parameters in both plots. The Kriging-interpolated figures showed that the soil spatial distribution was correlated with the vegetation distribution, individual size of plants, and the topographic features, especially with the plants nearest to sampling points and the topographic features. In each plot, soil EC, SOC, AN and AP presented similar distributions, and fertile islands and salt islands occurred in both plots but did not affect every individual plant, since the sampling distance was larger than the size of such fertile islands. The results of topographic effects on soil heterogeneity suggested significant differences between the interdunes and dune-tops. Different topographic characteristics (physical factors) between plots result in the differences in SOC, AN and AP, while the heterogeneity of soil pH and EC arise from plant species and their distribution (biotic factor). Such biotic and physical factors did not occur in isolation, but worked together on soil heterogeneity, and played important parts in improving the soil properties. Hence these factors were ecologically valuable in the highly resource-stressed arid study area.展开更多
The population dynamic tendency of Adenophora Iobophvlla Hong as an endangered species and Adenophora potaninii Korsh as widespread species. has been predicted by the Leslie matrix. And the comparison and analysis on ...The population dynamic tendency of Adenophora Iobophvlla Hong as an endangered species and Adenophora potaninii Korsh as widespread species. has been predicted by the Leslie matrix. And the comparison and analysis on the age structures between two species have been carried out in this paper. The results demonstrate the A. lobophylla popuations which have the reasonable age struetures perform slowly negative or positive increment at altitude 2300-3400 m. Especially. below altitude 2700 m. there are many populations performing seriously declining tendcncy. Contrary, A potaninii populations could adapt to environment perfectly at the corresponding condition without finding the population which performs the seriously declining tendency. The differences in developing tendency of population between the two species demonstrate that A. Iobopliylla populations have the weaker ability to adapt to the external unfavorable conditions.展开更多
Light attenuation within a row of crops such as cotton is influenced by canopy architecture,which is defined by size,shape and orientation of shoot components.Level of light interception causes an array of morpho-anat...Light attenuation within a row of crops such as cotton is influenced by canopy architecture,which is defined by size,shape and orientation of shoot components.Level of light interception causes an array of morpho-anatomical,physiological and biochemical changes.Physiological determinants of growth include light interception,light use efficiency,dry matter accumulation,duration of growth and dry matter partitioning.Maximum light utilization in cotton production can be attained by adopting cultural practices that yields optimum plant populations as they affect canopy arrangement by modifying the plant canopy components.This paper highlights the extent to which spatial arrangement and density affect light interception in cotton crops.The cotton crop branches tend to grow into the inter-row space to avoid shade.The modification of canopy components suggests a shade avoidance and competition for light.Maximum leaf area index is obtained especially at flowering stage with higher populations which depicts better yields in cotton production.展开更多
Drought stress, during growth season along with plant density, is an important problem that needs attention. In order to investigate the influence of both factors in increasing the water use efficiency, field experime...Drought stress, during growth season along with plant density, is an important problem that needs attention. In order to investigate the influence of both factors in increasing the water use efficiency, field experiments were laid out in split-plot design at Agriculture Research Station, Collage of Food and Agriculture Sciences, King Saud University, to investigate the effects of irrigation intervals viz., irrigation every (6, 9 and 12 days) under different plant densities i.e., (6, 8 and 10 plants/m<sup>2</sup>) on growth, yield and yield component parameters as well as grain quality of sorghum local variety (Gizani). Results revealed that almost all growth, yield and yield component parameters were significantly influenced by both factors as well as their interaction. Chemical composition of seeds, leaf proline content and WUE were also considered. Severe drought stress condition caused gradual decrease in most of the growth characters as compared to watered treatment and reflected in decreasing yield and yield component characters. Increasing plant densities led to raise biomass production and seed yield per unit area and not able to compensated the low number and weight of grains per panicle. Contrary, low plant density, under adequate irrigation conditions, can be compensated by a high number of grains per panicle and high weight of the grain. Maximum seed yield per hectare was recorded by the interactional effects of most watered treatments (irrigation every 6 days) and plant density of 10 plants per square meter.展开更多
A better understanding on how genetic diversity is structured at natural habitats can be helpful for exploration and acquisition of plant germplasm. Historically, studies have relied on DNA markers to elucidate potato...A better understanding on how genetic diversity is structured at natural habitats can be helpful for exploration and acquisition of plant germplasm. Historically, studies have relied on DNA markers to elucidate potato genetic diversity. Current advances in genomics are broadening applications allowing the identification of markers linked to genomic regions under selection. Those markers, known as adaptive markers, unlock additional ways to value and organize germplasm diversity. For example, conservation priorities could be given to germplasm units containing markers associated to unique geographic identity, and/or linked to traits of tolerance to abiotic stresses. This study investigated if adaptive marker loci were possible to be identified in a large AFLP marker dataset of ninety-four populations of the wild potato species </span><i><span style="font-family:Verdana;">S. fendleri.</span></i><span style="font-family:Verdana;"> These populations originated from six different mountain ranges in southern Arizona, USA. A total of 2094 polymorphic AFLP markers were used to co</span><span style="font-family:Verdana;">nduct genetic diversity analyses of populations and mountain ranges. Adaptive markers were detected using Bayesian methods which distinguished marker loci departing significantly from frequencies expected under neutral models of genetic differentiation. This identified 16 AFLP loci that </span><span style="font-family:Verdana;">were considered to be adaptive. To contrast diversity p</span><span style="font-family:Verdana;">arameters generated with each set of markers, analyses that included all the 2094 AFLP markers, and only the 16 adaptive markers were conducted. The results showed that both were efficient for establishing genetic associations among populations and mountain ranges. However, adaptive markers were better on revealing geographic patterns and identity which would suggest these markers were linked to selection at the natural sites. An additional test to determine if adaptive markers associated to climate variables found two loci associated to specific climate variables in populations from different regions but sharing similar environmental structure. The distribution of adaptive markers among populations revealed that only two were needed to build a core subset able to keep all the markers. This preliminary assessment shows that adaptive genetic diversity could offer an additional way to measure diversity in potato germplasm and to set up options for conservation and research.展开更多
Background: Supernumerary chromosomes (B) comprise optional complement to basic (A) chromosome set. The presence of B-chromosomes may significantly reduce plant vigor and fertility. Potentially active genes constitute...Background: Supernumerary chromosomes (B) comprise optional complement to basic (A) chromosome set. The presence of B-chromosomes may significantly reduce plant vigor and fertility. Potentially active genes constitute only small fraction of DNA of these chromosomes indicating that these effects are mediated by epigenetic mechanisms. One example is down-regulation of rDNA genes and condensation of their respective chromatin regions (demonstrated in squashed preparations using 2D microscopy). It may be postulated that the presence of B chromosomes leads to more extensive changes of local chromatin structure. Verification of hypothesis requires studying 3D spatial architecture of intact nuclei in tissue. Results: An image processing algorithm was developed and applied for isolation (from the confocal datasets) of regions corresponding to single nuclei. The nuclei were segmented using iterative global thresholding followed by growing and merging of regions belonging to different nuclei. The result of segmentation was verified by a human observer. Chromatin architecture was characterized quantitatively using global fluorescence intensity distribution measures (mean, variance) and local intensity distribution parameters (haraclick features, wavelet energy, run- length features). The sets of parameters corresponding to populations of nuclei with different number of B-chromo- somes were subjected to discriminate analysis. The distinct parameters were then correlated with depth in tissue at which a given nucleus was positioned. Conclusions: Combination of light microscopy with dedicated image processing and analysis framework made it possible to study chromatin architecture in nuclei containing various number of B chromosomes. These data indicate that alterations of 3D chromatin distribution occur globally in the interphase nuclei in the presence of Bs. The changes occur at the spatial scale comparable with the resolution limit of light microscopy and at larger distances.展开更多
Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in...Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in 2008 and 2009 in 13 counties to determine if increased planting population density (PPD) would break the stagnant yield. The results showed that significant differences among the fields existed in theoretical yield, PPD, and bolls per square meter (BPM). The lowest yield of 1 641.1 kg ha-I was resulted from the lowest PPD of 1.7 plants m-2 and the lowest BPM of 71.8 bolls m-2, while the highest yield of 2 779.7 kg ha-~ was resulted from the highest PPD of 2.5 plants m-2, and the highest BPM of 129.4 bolls m-z. Plant mapping revealed that boll retention rate (BRR) was maintained over 30 or 40% for the first 17-18 fruiting branches (FBs) and decreased dramatically thereafter, rotten boll rate (RBR) decreased, but open boll rate (OBR) rose first and dropped later with rising FB from the bottom to the top. But BRR, RBR, and OBR were all dropped with the fruiting positions (FPs) extending outwards. The optimum range of plant density would be 2-3 plants m-2 and the proper individual plant structure would be 16-19 FBs with 5-7 FPs for cotton production in Hubei Province.展开更多
Tomato is an important field crop,and nutritional imbalances frequently reduce its yield.Diagnosis and Recommendation Integrated System(DRIS),uses ratios for nutrient deficiency diagnosis instead of absolute concentra...Tomato is an important field crop,and nutritional imbalances frequently reduce its yield.Diagnosis and Recommendation Integrated System(DRIS),uses ratios for nutrient deficiency diagnosis instead of absolute concentration in plant tests.In this study,local DRIS norms for the field tomatoes were established and the nutrient(s)limiting tomatoes yield were determined.Tomato leaves were analyzed for nutrients,to identify nutritional status using the DRIS approach.One hundred tomatoes fields were selected from Chatter Plain Khyber Pakhtunkhwa and the Sheikupura Punjab Pakistan.The first fully matured leaf was sampled,rinsed,dried and ground for analyzing P,K,Ca,Mg,Cu,Fe,Mn and Zn using an Inductively Coupled Plasma Atomic Emission Spectrophotometer(ICP AES).Plant tissue N and S were measured by the combustion method.The tomatoes yields were recorded at each location.The data were divided into high-yielding(≥3.79 kg/10 plant)and low-yielding(<3.79 kg/10 plant)populations and norms were computed using standard DRIS procedures.High-yielding plant population had a statistically greater mean S and Fe than the low-yielding population.The average balance index,the sum of functions,for S and Fe were−11.04 and−5.17 which reflected deficiency of S and Fe.Plant nutrients norms established may optimize plant nutrition in field tomatoes for high yield.展开更多
Currently the soybean crop is affected by the white mold (Sclerotinia sclerotiorum). The disease can reduce the crop yield and quality and decrease the prices of agricultural lands. The aim of the current research was...Currently the soybean crop is affected by the white mold (Sclerotinia sclerotiorum). The disease can reduce the crop yield and quality and decrease the prices of agricultural lands. The aim of the current research was to assess epidemiology of white mold on soybean crop grown at Arapoti, PR, Brazil, utilizing data related to agricultural practices and local meteorological factors. The experiment was conducted in a naturally infested area. The soybean crop was sown on October 18th, 2011. The experimental design adopted herein was a randomized block in a factorial combination with 4 row spacings (0.35, 0.45, 0.60, 0.75 m) and 4 plant populations (150, 200, 250, 300 thousand plants per hectare) and 4 replications. The temporal analysis of the epidemic was evaluated using mathematical models, such as Logistics, Monomolecular and Gompertz, in order to determine the best model that described the progress of the disease as a function of local meteorological elements. For the incidence data it has been shown that both logistic and monomolecular models were those that were best fitted to the experimental data. For severity, the best model related to the experimental data was the logistic one. Either for incidence or for severity, air temperature was considered to be the environmental factor most affecting the progress of the disease. The variability in the apparent infection rates of white mold on soybean was not affected by different row spacings and plant populations;therefore, suggesting that macroclimatic variations prevailed in such a fashion to mitigate the effect of cultural practices adopted in the field.展开更多
基金supported by the National Natural Science Foundation of China(grant no.31960385)the Natural Science Foundation of Jiangxi,China(grant no.20212BAB215009)。
文摘Background Mepiquat chloride(MC)application and plant population density(PPD)increasing are required for modern cotton production.However,their interactive effects on leaf physiology and carbohydrate metabolism remain obscure.This study aimed to examine whether and how MC and PPD affect the leaf morpho-physiological characteristics,and thus final cotton yield.PPD of three levels(D1:2.25 plants·m^(-2),D2:4.5 plants·m^(-2),and D3:6.75 plants·m^(-2))and MC dosage of two levels(MC0:0 g·ha^(-2),MC1:82.5 g·ha^(-2))were combined to create six treatments.The dynamics of nonstructual carbohydrate concentration,carbon metabolism-related enzyme activity,and photosynthetic attributes in cotton leaves were examined during reproductive growth in 2019 and 2020.Results Among six treatments,the high PPD of 6.75 plants·m^(-2)combined with MC application(MC1D3)exhibited the greatest seed cotton yield and biological yield.The sucrose,hexose,starch,and total nonstructural carbohydrate(TNC)concentrations peaked at the first flowering(FF)stage and then declined to a minimum at the first boll opening(FBO)stage.Compared with other treatments,MC1D3 improved starch and TNC concentration by 5.4%~88.4%,7.8%~52.0% in 2019,and by 14.6%~55.9%,13.5%~39.7% in 2020 at the FF stage,respectively.Additionally,MC1D3 produced higher transformation rates of starch and TNC from the FF to FBO stages,indicating greater carbon production and utilization efficiency.MC1D3 displayed the maximal specific leaf weight(SLW)at the FBO stage,and the highest chlorophyll a(Chl a),Chl b,and Chl a+b concentration at the mid-late growth phase in both years.The Rubisco activity with MC1D3 was 2.6%~53.2% higher at the flowering and boll setting stages in both years,and 2.4%~52.7% higher at the FBO stage in 2020 than those in other treatments.These results provided a explanation of higher leaf senescence-resistant ability in MC1D3.Conclusion Increasing PPD coupled with MC application improves cotton yield by enhancing leaf carbohydrate production and utilization efficiency and delaying leaf senescence.
文摘The effects of nitrogen, phosphorus and potassium application level, seed rate and transplanting density on the growth and development of rice plants were studied to find out nutrient status in high-yielding rice plants and to increase grain yield by adequate fertilization. There was an equilibrium relationship among nutrient elements for high-yielding rice plant populations. The equilibrium index of nutrient amount, content and distribution in high-yielding rice plants should be generally greater than-2 but less than 2. The optimum nutritive proportion of nitrogen: phosphorus: potassium assimilated by the plants was about 10: 2: 9 at the ripening stage. But the content and the proportion varied with the growth stages. Therefore, the nutrient in rice plant populations should be in a dynamic equilibrium, so as to achieve high yield.
文摘Rice production in Pakistan is constraint by many factors pertaining to prevalent planting techniques. A research on the feasibility of new planting techniques (direct seeding on flat, transplanting on flat, direct seeding on ridges, transplanting on ridges and parachute planting) in transplanted and direct wet-seeded rice was undertaken at Dera Ismail Khan region of Pakistan's North West Frontier Province during 2002 and 2003. Among the planting techniques, the best performance for the yield formation and economic evaluation was noted for transplanting on flat during both years. Chinese parachute planting technology also showed very promising results in most of the parameters. Direct seeding on ridges could not excel transplanting on flat and parachute planting during both cropping seasons. The findings concluded the feasibility of parachute planting technology along with traditional rice transplanting on flat over all other planting techniques being practiced in the area.
文摘Current arable land and increasing food demand necessitates the practice of double and multiple cropping systems with inclusion of ultra-fast maize hybrids, which are characterized by smaller size, fewer leaves per plant, lower leaf area and fewer self-shading problems, under irrigation. In this context, a field experiment was conducted for two successive cropping seasons 2008/2009 to 2009/2010 at Kenilworth Experimental Station to evaluate the effect of row spacings and plant density on growth. Three row spacing (0.225, 0.45 and 0.90 m) and five plant densities (5, 7.5, 10, 12.5 and 15 plants m^-2) were used. Treatments were combined in a factorial combination and laid out in a completely randomized design with replications consisting of five single plants randomly selected from each treatment for destructive sampling. Growth factors reacted differently to row spacing by plant density. At crop establishment, growth indicators were not significantly affected by either main effects or a combination thereof. However, at the end of the vegetative phase, almost all growth indicators reached a maximum and were significantly affected by treatment interactions. Growth analysis showed that there was an interaction effect of row spacing by plant density on plant height, dry matter (DM) accumulation, leaf area index (LAI), crop growth rate (CGR) and net assimilation rate (NAR) of maize. Therefore, the current investigation demonstrated that a row spacing of 0.45 m or 0.90 m with a plant density of 10 plants m^-2 was optimum for the selected ultra-fast maize hybrid under irrigation.
基金Supported by National Natural Science Foundation of China(31960069).
文摘Manglietia ventii is a wild plant species with extremely small populations endemic to Yunnan,mainly distributed in southeast Yunnan.Due to the continuous deterioration of natural habitats,excessive felling and utilization of human beings,and the decline of breeding ability,the number of individuals in the population has decreased significantly.Through field investigation and literature review,the research status of M.ventii in systematics,conservation ecology,reproductive biology,genetic diversity,endangered mechanism and resource protection at home and abroad are systematically reviewed.And the future research direction is prospected.It is necessary to strengthen the research on the basic characteristics of M.ventii,explore the transmission route of M.ventii and deepen the development and utilization of resources,in order to provide a theoretical support for the protection and sustainable utilization of germplasm resources of M.ventii,and provide a reference for the protection of other wild plant species with extremely small populations.
文摘Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P 〈 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P 〈 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P 〈 0.001), as well as 72.59% variation within populations (P 〈 0.001). Molecular variation within populations was significantly different among 16 populations.
文摘Insect infestation, soil moisture, and yield were examined in populations of≈33 140 plants/ha (low) and ≈ 40 340 plants/ha (high) of an oilseed sunflower, Helianthus annuus L, cv. ' Triumph 660CL' with two levels of weediness. Less weedy plots resulted from the application of herbicide combination of S-metolachlor and sulfentrazone, whereas more weedy plots resulted from application of sulfentrazone alone. Among the 12 weed species recorded, neither plant numbers nor biomass differed between crop plant densities. Larvae of the stalk-boring insects Cylindrocopturus adspersus (Coleoptera: Curculionidae) and Mordellistena sp. (Coleoptera: Mordellidae) were less abundant in high density sunflowers, ostensibly due to reduced plant size. However, the same effect was not observed for Dectes texanus (Coleoptera: Cerambycidae) or Pelochrista womanana (Lepidoptera: Tortricidae), two other stalk-boring insects. Soil moisture was highest in low density and lowest in the high density sunflowers that were less weedy. Stalk circumference, head diameter, and seed weight were reduced for sunflower plants with short interplant distances (mean = 20 cm apart) compared to plants with long interplant distances (mean = 46 cm apart). These three variables were greater in less weedy plots compared with more weedy plot〉 and positively correlated with interplant distance. Yields on a per-hectare basis paralleled those on a per-plant basis but were not different among treatments. The agronomic implications of planting density are discussed in the context of weed and insect management.
基金Supported by Basic Scientific Research Business Funds of Public Welfare Scientific Research Institutes of the Autonomous Region in 2022 (kyys202201)
文摘In recent years,the protection of PSESP has gradually become a hot issue in biodiversity research.Through the investigation and analysis of PSESP in Xinjiang,it is shown that:①there are 75 species of PSESP in Xinjiang,including 22 species of trees,18 species of shrubs and 35 species of herbs.The habitats are mainly in extremely cold,extremely dry or extremely narrow conditions such as snow line,desert,mountain,wetland and so on.②53 species(70.67%)are listed as national or autonomous region protected plants,and 22 species of PSESP are not listed in the protection;there are 70 species of PSESP listed in the red list,accounting for 93.33%.③The PSESP in Xinjiang are mainly distributed in the Altai Mountains,western Tianshan Mountains,Pamir Plateau and Karakoram Mountains;they are distributed in all kinds of nature reserves,forest parks,wetland parks and other natural ecological protection areas in Xinjiang.Ammopiptanthus nanus(M.Pop.)Cheng F.,Cistanche tubulosa(Schenk)Wight,Calligonum roborovskii A.Los.and Prunus cerasifera Ehrhart have not been found in the literature,indicating that they are distributed in protected areas.In order to provide a theoretical basis for the conservation of biodiversity in Xinjiang,this paper puts forward some suggestions on the protection of PSESP.
文摘Field experiments were carried out in northern Zhejiang Province. Three insecticides (methamidophos,Shachongshuang and triazophos) were used to control the rice leaffolder Cnaphalocrocis medinalis and rice striped stemborer Chilo suppressalis in rice fields during 18—27 days after transplantating. The impacts of timing and insecticides on the population development of brown planthopper Nilaparavata lugens was surveyed by direct counting on the plants or by tapping method.
基金supported by the National Natural Science Foundation of China (40701187)the Western Light Project of the Chinese Academy of Sciences (XBBS200808)
文摘Spatial heterogeneity is a ubiquitous feature in natural ecosystems, especially in arid regions. Different species and their discontinuous distribution, accompanied by varied topographic characteristics, result in soil resources distributed differently in different locations, and present significant spatial heterogeneity in desert ecosystems. In this study, conventional and geostatistical methods were used to identify the heterogeneity of soil chemical properties in two desert populations, Haloxylon persicum Bunge ex Boss., which dominates on the slopes and tops of sand dunes and Haloxylon ammodendron (C. A. Mey.) Bunge, which inhabits interdunes in the Gurbantunggut Desert of Xinjiang, China. The results showed that soil pH, electrical conductivity (EC), soil organic carbon (SOC), available nitrogen (AN) and available phosphorus (AP) were significantly higher in H. ammodendron populations than that in H. persicum. The coefficient of variation (CV) indicated that (1) most parameters presented a moderate degree of variability (10% 【 CV 【 100%) except pH in both plots, (2) the variability of soil pH, EC and AP in H. ammodendron populations was higher than that in H. persicum populations, and (3) SOC and AN in H. ammodendron populations were lower than that in H. persicum populations. Geostatistical analysis revealed a strong spatial dependence (C0/(C0+C) 【 25%) within the distance of ranges for all tested parameters in both plots. The Kriging-interpolated figures showed that the soil spatial distribution was correlated with the vegetation distribution, individual size of plants, and the topographic features, especially with the plants nearest to sampling points and the topographic features. In each plot, soil EC, SOC, AN and AP presented similar distributions, and fertile islands and salt islands occurred in both plots but did not affect every individual plant, since the sampling distance was larger than the size of such fertile islands. The results of topographic effects on soil heterogeneity suggested significant differences between the interdunes and dune-tops. Different topographic characteristics (physical factors) between plots result in the differences in SOC, AN and AP, while the heterogeneity of soil pH and EC arise from plant species and their distribution (biotic factor). Such biotic and physical factors did not occur in isolation, but worked together on soil heterogeneity, and played important parts in improving the soil properties. Hence these factors were ecologically valuable in the highly resource-stressed arid study area.
文摘The population dynamic tendency of Adenophora Iobophvlla Hong as an endangered species and Adenophora potaninii Korsh as widespread species. has been predicted by the Leslie matrix. And the comparison and analysis on the age structures between two species have been carried out in this paper. The results demonstrate the A. lobophylla popuations which have the reasonable age struetures perform slowly negative or positive increment at altitude 2300-3400 m. Especially. below altitude 2700 m. there are many populations performing seriously declining tendcncy. Contrary, A potaninii populations could adapt to environment perfectly at the corresponding condition without finding the population which performs the seriously declining tendency. The differences in developing tendency of population between the two species demonstrate that A. Iobopliylla populations have the weaker ability to adapt to the external unfavorable conditions.
基金Source of funding for compiling this review paper is the Department of Research and Specialist Services through the Cotton Research Institute,Zimbabwe.
文摘Light attenuation within a row of crops such as cotton is influenced by canopy architecture,which is defined by size,shape and orientation of shoot components.Level of light interception causes an array of morpho-anatomical,physiological and biochemical changes.Physiological determinants of growth include light interception,light use efficiency,dry matter accumulation,duration of growth and dry matter partitioning.Maximum light utilization in cotton production can be attained by adopting cultural practices that yields optimum plant populations as they affect canopy arrangement by modifying the plant canopy components.This paper highlights the extent to which spatial arrangement and density affect light interception in cotton crops.The cotton crop branches tend to grow into the inter-row space to avoid shade.The modification of canopy components suggests a shade avoidance and competition for light.Maximum leaf area index is obtained especially at flowering stage with higher populations which depicts better yields in cotton production.
文摘Drought stress, during growth season along with plant density, is an important problem that needs attention. In order to investigate the influence of both factors in increasing the water use efficiency, field experiments were laid out in split-plot design at Agriculture Research Station, Collage of Food and Agriculture Sciences, King Saud University, to investigate the effects of irrigation intervals viz., irrigation every (6, 9 and 12 days) under different plant densities i.e., (6, 8 and 10 plants/m<sup>2</sup>) on growth, yield and yield component parameters as well as grain quality of sorghum local variety (Gizani). Results revealed that almost all growth, yield and yield component parameters were significantly influenced by both factors as well as their interaction. Chemical composition of seeds, leaf proline content and WUE were also considered. Severe drought stress condition caused gradual decrease in most of the growth characters as compared to watered treatment and reflected in decreasing yield and yield component characters. Increasing plant densities led to raise biomass production and seed yield per unit area and not able to compensated the low number and weight of grains per panicle. Contrary, low plant density, under adequate irrigation conditions, can be compensated by a high number of grains per panicle and high weight of the grain. Maximum seed yield per hectare was recorded by the interactional effects of most watered treatments (irrigation every 6 days) and plant density of 10 plants per square meter.
文摘A better understanding on how genetic diversity is structured at natural habitats can be helpful for exploration and acquisition of plant germplasm. Historically, studies have relied on DNA markers to elucidate potato genetic diversity. Current advances in genomics are broadening applications allowing the identification of markers linked to genomic regions under selection. Those markers, known as adaptive markers, unlock additional ways to value and organize germplasm diversity. For example, conservation priorities could be given to germplasm units containing markers associated to unique geographic identity, and/or linked to traits of tolerance to abiotic stresses. This study investigated if adaptive marker loci were possible to be identified in a large AFLP marker dataset of ninety-four populations of the wild potato species </span><i><span style="font-family:Verdana;">S. fendleri.</span></i><span style="font-family:Verdana;"> These populations originated from six different mountain ranges in southern Arizona, USA. A total of 2094 polymorphic AFLP markers were used to co</span><span style="font-family:Verdana;">nduct genetic diversity analyses of populations and mountain ranges. Adaptive markers were detected using Bayesian methods which distinguished marker loci departing significantly from frequencies expected under neutral models of genetic differentiation. This identified 16 AFLP loci that </span><span style="font-family:Verdana;">were considered to be adaptive. To contrast diversity p</span><span style="font-family:Verdana;">arameters generated with each set of markers, analyses that included all the 2094 AFLP markers, and only the 16 adaptive markers were conducted. The results showed that both were efficient for establishing genetic associations among populations and mountain ranges. However, adaptive markers were better on revealing geographic patterns and identity which would suggest these markers were linked to selection at the natural sites. An additional test to determine if adaptive markers associated to climate variables found two loci associated to specific climate variables in populations from different regions but sharing similar environmental structure. The distribution of adaptive markers among populations revealed that only two were needed to build a core subset able to keep all the markers. This preliminary assessment shows that adaptive genetic diversity could offer an additional way to measure diversity in potato germplasm and to set up options for conservation and research.
基金supported by the Polish Ministry for Sci-ence and Higher Education(MNiSW)grant Nr N N301 463834(TB).
文摘Background: Supernumerary chromosomes (B) comprise optional complement to basic (A) chromosome set. The presence of B-chromosomes may significantly reduce plant vigor and fertility. Potentially active genes constitute only small fraction of DNA of these chromosomes indicating that these effects are mediated by epigenetic mechanisms. One example is down-regulation of rDNA genes and condensation of their respective chromatin regions (demonstrated in squashed preparations using 2D microscopy). It may be postulated that the presence of B chromosomes leads to more extensive changes of local chromatin structure. Verification of hypothesis requires studying 3D spatial architecture of intact nuclei in tissue. Results: An image processing algorithm was developed and applied for isolation (from the confocal datasets) of regions corresponding to single nuclei. The nuclei were segmented using iterative global thresholding followed by growing and merging of regions belonging to different nuclei. The result of segmentation was verified by a human observer. Chromatin architecture was characterized quantitatively using global fluorescence intensity distribution measures (mean, variance) and local intensity distribution parameters (haraclick features, wavelet energy, run- length features). The sets of parameters corresponding to populations of nuclei with different number of B-chromo- somes were subjected to discriminate analysis. The distinct parameters were then correlated with depth in tissue at which a given nucleus was positioned. Conclusions: Combination of light microscopy with dedicated image processing and analysis framework made it possible to study chromatin architecture in nuclei containing various number of B chromosomes. These data indicate that alterations of 3D chromatin distribution occur globally in the interphase nuclei in the presence of Bs. The changes occur at the spatial scale comparable with the resolution limit of light microscopy and at larger distances.
基金funded by the Professional (Agriculture) Researching Project for Public Benefit of Ministry of Agriculture,China (3-5)High-Yielding Promotion Project of Ministry of Agriculture,Chinathe National Industrial System Program of Modern Agriculture,China
文摘Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in 2008 and 2009 in 13 counties to determine if increased planting population density (PPD) would break the stagnant yield. The results showed that significant differences among the fields existed in theoretical yield, PPD, and bolls per square meter (BPM). The lowest yield of 1 641.1 kg ha-I was resulted from the lowest PPD of 1.7 plants m-2 and the lowest BPM of 71.8 bolls m-2, while the highest yield of 2 779.7 kg ha-~ was resulted from the highest PPD of 2.5 plants m-2, and the highest BPM of 129.4 bolls m-z. Plant mapping revealed that boll retention rate (BRR) was maintained over 30 or 40% for the first 17-18 fruiting branches (FBs) and decreased dramatically thereafter, rotten boll rate (RBR) decreased, but open boll rate (OBR) rose first and dropped later with rising FB from the bottom to the top. But BRR, RBR, and OBR were all dropped with the fruiting positions (FPs) extending outwards. The optimum range of plant density would be 2-3 plants m-2 and the proper individual plant structure would be 16-19 FBs with 5-7 FPs for cotton production in Hubei Province.
基金supporting current work by Taif University Researchers Supporting Project No.(TURSP–2020/288),Taif University,Taif,Saudi Arabia.
文摘Tomato is an important field crop,and nutritional imbalances frequently reduce its yield.Diagnosis and Recommendation Integrated System(DRIS),uses ratios for nutrient deficiency diagnosis instead of absolute concentration in plant tests.In this study,local DRIS norms for the field tomatoes were established and the nutrient(s)limiting tomatoes yield were determined.Tomato leaves were analyzed for nutrients,to identify nutritional status using the DRIS approach.One hundred tomatoes fields were selected from Chatter Plain Khyber Pakhtunkhwa and the Sheikupura Punjab Pakistan.The first fully matured leaf was sampled,rinsed,dried and ground for analyzing P,K,Ca,Mg,Cu,Fe,Mn and Zn using an Inductively Coupled Plasma Atomic Emission Spectrophotometer(ICP AES).Plant tissue N and S were measured by the combustion method.The tomatoes yields were recorded at each location.The data were divided into high-yielding(≥3.79 kg/10 plant)and low-yielding(<3.79 kg/10 plant)populations and norms were computed using standard DRIS procedures.High-yielding plant population had a statistically greater mean S and Fe than the low-yielding population.The average balance index,the sum of functions,for S and Fe were−11.04 and−5.17 which reflected deficiency of S and Fe.Plant nutrients norms established may optimize plant nutrition in field tomatoes for high yield.
文摘Currently the soybean crop is affected by the white mold (Sclerotinia sclerotiorum). The disease can reduce the crop yield and quality and decrease the prices of agricultural lands. The aim of the current research was to assess epidemiology of white mold on soybean crop grown at Arapoti, PR, Brazil, utilizing data related to agricultural practices and local meteorological factors. The experiment was conducted in a naturally infested area. The soybean crop was sown on October 18th, 2011. The experimental design adopted herein was a randomized block in a factorial combination with 4 row spacings (0.35, 0.45, 0.60, 0.75 m) and 4 plant populations (150, 200, 250, 300 thousand plants per hectare) and 4 replications. The temporal analysis of the epidemic was evaluated using mathematical models, such as Logistics, Monomolecular and Gompertz, in order to determine the best model that described the progress of the disease as a function of local meteorological elements. For the incidence data it has been shown that both logistic and monomolecular models were those that were best fitted to the experimental data. For severity, the best model related to the experimental data was the logistic one. Either for incidence or for severity, air temperature was considered to be the environmental factor most affecting the progress of the disease. The variability in the apparent infection rates of white mold on soybean was not affected by different row spacings and plant populations;therefore, suggesting that macroclimatic variations prevailed in such a fashion to mitigate the effect of cultural practices adopted in the field.