Independence among leaf economics,leaf hydraulics and leaf size confers plants great capability in adapting to heterogeneous environments.However,it remains unclear whether the independence of the leaf traits revealed...Independence among leaf economics,leaf hydraulics and leaf size confers plants great capability in adapting to heterogeneous environments.However,it remains unclear whether the independence of the leaf traits revealed across species still holds within species,especially under stressed conditions.Here,a suite of traits in these dimensions were measured in leaves and roots of a typical mangrove species,Ceriops tagal,which grows in habitats with a similar sunny and hot environment but different soil salinity in southern China.Compared with C.tagal under low soil salinity,C.tagal under high soil salinity had lower photosynthetic capacity,as indicated directly by a lower leaf nitrogen concentration and higher water use efficiency,and indirectly by a higher investment in defense function and thinner palisade tissue;had lower water transport capacity,as evidenced by thinner leaf minor veins and thinner root vessels;and also had much smaller single leaf area.Leaf economics,hydraulics and leaf size of the mangrove species appear to be coordinated as one trait dimension,which likely stemmed from covariation of soil water and nutrient availability along the salinity gradient.The intraspecific leaf trait relationship under a stressful environment is insightful for our understanding of plant adaption to the multifarious environments.展开更多
Drought is one of the most significant natural disasters in the arid and semi-arid areas of China.Populations or plant organs often differ in their responses to drought and other adversities at different growth stages...Drought is one of the most significant natural disasters in the arid and semi-arid areas of China.Populations or plant organs often differ in their responses to drought and other adversities at different growth stages.At present,little is known about the size-and leaf age-dependent differences in the mechanisms of shrub-related drought resistance in the deserts of China.Here,we evaluated the photosynthetic and physiological responses of Artemisia ordosica Krasch.to drought stress using a field experiment in Mu Us Sandy Land,Ningxia Hui Autonomous Region,China in 2018.Rainfall was manipulated by installing outdoor shelters,with four rainfall treatments applied to 12 plots(5 m×5 m).There were four rainfall levels,including a control and rainfall reductions of 30%,50%and 70%,each with three replications.Taking individual crown size as the dividing basis,we measured the responses of A.ordosica photosynthetic and physiological responses to drought at different growth stages,i.e.,large-sized(>0.5 m^(2))and small-sized(≤0.5 m^(2))plants.The leaves of A.ordosica were divided into old leaves and young leaves for separate measurement.Results showed that:(1)under drought stress,the transfer efficiency of light energy captured by antenna pigments to the photosystem II(PSII)reaction center decreased,and the heat dissipation capacity increased simultaneously.To resist the photosynthetic system damage caused by drought,A.ordosica enhanced its free radical scavenging capacity by activating its antioxidant enzyme system;and(2)growth stage and leaf age had effects on the reaction of the photosynthetic system to drought.Small A.ordosica plants could not withstand severe drought stress(70%rainfall reduction),whereas large A.ordosica individuals could absorb deep soil water to ensure their survival in severe drought stressed condition.Under 30%and 50%rainfall reduction conditions,young leaves had a greater ability to resist drought than old leaves,whereas the latter were more resistant to severe drought stress.The response of A.ordosica photosynthetic system reflected the trade-off at different growth stages and leaf ages of photosynthetic production under different degrees of drought.This study provides a more comprehensive and systematic perspective for understanding the drought resistance mechanisms of desert plants.展开更多
Resource allocation to female and male function may vary among individual plants in species with variable sex expression.Size-dependent sex allocation has been proposed in hermaphrodites,in which female-biased allocat...Resource allocation to female and male function may vary among individual plants in species with variable sex expression.Size-dependent sex allocation has been proposed in hermaphrodites,in which female-biased allocation may increase with plant size.In many hermaphrodites with large floral displays,however,later-produced flowers tend to be functionally male.This paradoxical relationship between female and male function and plant size remains poorly understood.The subalpine lily Lilium lankongense has individuals of three sexual types:males with only staminate flowers,hermaphrodites with only perfect flowers,and andromonoecious plants with both perfect and staminate flowers.Here we tested theoretical predictions of size-dependent sex allocation in L.lankongense by measuring plant height and flower number of individuals of each sex at five field sites in the mountainous region of Shangri-La,southwestern China.To investigate variation in phenotypic gender,we identified sex expression of 457 individuals one year later.Our investigation showed that male plants,which usually produced one flower,were significantly smaller than and ro monoecious and hermaphrodite plants.In addition,the total flower numbers of andromonoecious and hermaphrodite plants increased significantly with plant size.Large individuals were more likely to produce terminal staminate flowers,as there were more flowers in andromonoecious than in hermaphrodite individuals.Non-flowered plants were significantly smaller than flowering ones.Perfect flowers had significantly larger petals and pistils than staminate flowers,but they did not differ in dry weight of stamens.Our findings indicate that when plants are small,the less costly sex is favored,consistent with the‘size-advantage hypothesis’.When plants are large,both female and male investments change isometrically,as later-produced flowers tend to be functionally male.展开更多
Ratios of stable nitrogen isotopes in organic matter derived from plants and preserved in soil are potential tracers for nitrogen cycles in natural ecosystems and valuable for evaluation of climate change. However, th...Ratios of stable nitrogen isotopes in organic matter derived from plants and preserved in soil are potential tracers for nitrogen cycles in natural ecosystems and valuable for evaluation of climate change. However, the rela-tionship between nitrogen isotopic compositions in surface soil and in plant litter during the decomposition process from plant litter to soil organic matter is not well understood. By using nitrogen isotopic analysis of soil parti-cle-sized fractions, nitrogen isotope discrimination between plant litter and surface soil organic matter in various modern ecosystems in northwestern China was conducted. The results of our study indicate that: (1) in general, the nitrogen isotopic compositions of particle-sized fractions from surface soil are different, and δ15N values increase from plant litter to fine soil organic matter; (2) the δ15N values in the soil particle-sized fractions become larger with increasing relative humidity and temperature, and the largest variation in the δ15N values is from -5.9‰ to -0.3‰; and (3) under a controlled climate, significant nitrogen isotope differences in δ15N values (Δδ15Nplant-soil) between plant litter and bulk soil organic matter were observed, with the values of 1.52 to 4.75 at various sites. Our results suggested that comparisons of Δδ15N values between bulk soil and the particle-sized fractions of soil could reveal the effect of humidity on transferring process of nitrogen from plant to soil in arid and semi-arid ecosystems.展开更多
Rice(Oryza sativa L.)is a major food crop worldwide.Plant height and yield are important agronomic traits of rice.Several genes regulating plant height and/or yield have been cloned.However,the molecular mechanisms co...Rice(Oryza sativa L.)is a major food crop worldwide.Plant height and yield are important agronomic traits of rice.Several genes regulating plant height and/or yield have been cloned.However,the molecular mechanisms coordinating plant height and yield are not fully characterized.Here,we report a novel gene,OstMAPKKK5 that encodes a truncated variant of a mitogen-activated protein kinase kinase kinase 5(OsMAPKKK5)lacking an intact kinase domain.Transgenic plants overexpressing OstMAPKKK5 in indica cultivar 9311 showed increased plant height,grain length,grain width,1000-grain weight,grain number per main panicle,and yield.Real-time quantitative PCR showed that OstMAPKKK5 was widely expressed in various tissues and developmental stages.The increased plant height and yield were attributed to enlarged cell size.Overexpression of OstMAPKKK5 led to higher contents of various forms of endogenous gibberellin(GA),especially the most common active forms,GA1,GA3,GA4.We concluded that OstMAPKKK5 positively regulates plant height and yield in rice by affecting cell size,and that its underlying mechanism is based on increased endogenous GA content.展开更多
Fresh plant material is usually used for genome size estimation by flow cytometry(FCM). Lack of fresh material is cited as one of the main reasons for the dearth of studies on plants from remote locations.Genome sizes...Fresh plant material is usually used for genome size estimation by flow cytometry(FCM). Lack of fresh material is cited as one of the main reasons for the dearth of studies on plants from remote locations.Genome sizes in fresh versus desiccated tissue of 16 Ophiopogoneae species and five model plant species were estimated. Our results indicated that desiccated tissue was suitable for genome size estimation; this method enables broader geographic sampling of plants when fresh tissue collection is not feasible. To be useful, after dessication the Ophiopogoneae sample should be green without brown or yellow markings;it should be stored in deep freezer at à80C, and the storage time should be no more than 6 months.展开更多
基金This study was funded by the National Natural Science Foundation of China(32171746,31870522 and 31670550)Special Foundation for National Science and Technology Basic Research Program of China(2019FY101300)the Scientific Research Foundation of Henan Agricultural University(30500854).
文摘Independence among leaf economics,leaf hydraulics and leaf size confers plants great capability in adapting to heterogeneous environments.However,it remains unclear whether the independence of the leaf traits revealed across species still holds within species,especially under stressed conditions.Here,a suite of traits in these dimensions were measured in leaves and roots of a typical mangrove species,Ceriops tagal,which grows in habitats with a similar sunny and hot environment but different soil salinity in southern China.Compared with C.tagal under low soil salinity,C.tagal under high soil salinity had lower photosynthetic capacity,as indicated directly by a lower leaf nitrogen concentration and higher water use efficiency,and indirectly by a higher investment in defense function and thinner palisade tissue;had lower water transport capacity,as evidenced by thinner leaf minor veins and thinner root vessels;and also had much smaller single leaf area.Leaf economics,hydraulics and leaf size of the mangrove species appear to be coordinated as one trait dimension,which likely stemmed from covariation of soil water and nutrient availability along the salinity gradient.The intraspecific leaf trait relationship under a stressful environment is insightful for our understanding of plant adaption to the multifarious environments.
基金This research was supported by the National Natural Science Foundation of China(31700639)the National Key Research and Development Program of China(2018YFC0507102,2016YFC0500905).
文摘Drought is one of the most significant natural disasters in the arid and semi-arid areas of China.Populations or plant organs often differ in their responses to drought and other adversities at different growth stages.At present,little is known about the size-and leaf age-dependent differences in the mechanisms of shrub-related drought resistance in the deserts of China.Here,we evaluated the photosynthetic and physiological responses of Artemisia ordosica Krasch.to drought stress using a field experiment in Mu Us Sandy Land,Ningxia Hui Autonomous Region,China in 2018.Rainfall was manipulated by installing outdoor shelters,with four rainfall treatments applied to 12 plots(5 m×5 m).There were four rainfall levels,including a control and rainfall reductions of 30%,50%and 70%,each with three replications.Taking individual crown size as the dividing basis,we measured the responses of A.ordosica photosynthetic and physiological responses to drought at different growth stages,i.e.,large-sized(>0.5 m^(2))and small-sized(≤0.5 m^(2))plants.The leaves of A.ordosica were divided into old leaves and young leaves for separate measurement.Results showed that:(1)under drought stress,the transfer efficiency of light energy captured by antenna pigments to the photosystem II(PSII)reaction center decreased,and the heat dissipation capacity increased simultaneously.To resist the photosynthetic system damage caused by drought,A.ordosica enhanced its free radical scavenging capacity by activating its antioxidant enzyme system;and(2)growth stage and leaf age had effects on the reaction of the photosynthetic system to drought.Small A.ordosica plants could not withstand severe drought stress(70%rainfall reduction),whereas large A.ordosica individuals could absorb deep soil water to ensure their survival in severe drought stressed condition.Under 30%and 50%rainfall reduction conditions,young leaves had a greater ability to resist drought than old leaves,whereas the latter were more resistant to severe drought stress.The response of A.ordosica photosynthetic system reflected the trade-off at different growth stages and leaf ages of photosynthetic production under different degrees of drought.This study provides a more comprehensive and systematic perspective for understanding the drought resistance mechanisms of desert plants.
基金the National Natural Science Foundation of China(No.U1402267,31270281)to S.Q.H。
文摘Resource allocation to female and male function may vary among individual plants in species with variable sex expression.Size-dependent sex allocation has been proposed in hermaphrodites,in which female-biased allocation may increase with plant size.In many hermaphrodites with large floral displays,however,later-produced flowers tend to be functionally male.This paradoxical relationship between female and male function and plant size remains poorly understood.The subalpine lily Lilium lankongense has individuals of three sexual types:males with only staminate flowers,hermaphrodites with only perfect flowers,and andromonoecious plants with both perfect and staminate flowers.Here we tested theoretical predictions of size-dependent sex allocation in L.lankongense by measuring plant height and flower number of individuals of each sex at five field sites in the mountainous region of Shangri-La,southwestern China.To investigate variation in phenotypic gender,we identified sex expression of 457 individuals one year later.Our investigation showed that male plants,which usually produced one flower,were significantly smaller than and ro monoecious and hermaphrodite plants.In addition,the total flower numbers of andromonoecious and hermaphrodite plants increased significantly with plant size.Large individuals were more likely to produce terminal staminate flowers,as there were more flowers in andromonoecious than in hermaphrodite individuals.Non-flowered plants were significantly smaller than flowering ones.Perfect flowers had significantly larger petals and pistils than staminate flowers,but they did not differ in dry weight of stamens.Our findings indicate that when plants are small,the less costly sex is favored,consistent with the‘size-advantage hypothesis’.When plants are large,both female and male investments change isometrically,as later-produced flowers tend to be functionally male.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40673012, 40599422, 40523002)the National Key Funds of China (No. 2004CB720200)the Foundation for Excellent Doctoral Dissertation Awards of the People's Republic of China
文摘Ratios of stable nitrogen isotopes in organic matter derived from plants and preserved in soil are potential tracers for nitrogen cycles in natural ecosystems and valuable for evaluation of climate change. However, the rela-tionship between nitrogen isotopic compositions in surface soil and in plant litter during the decomposition process from plant litter to soil organic matter is not well understood. By using nitrogen isotopic analysis of soil parti-cle-sized fractions, nitrogen isotope discrimination between plant litter and surface soil organic matter in various modern ecosystems in northwestern China was conducted. The results of our study indicate that: (1) in general, the nitrogen isotopic compositions of particle-sized fractions from surface soil are different, and δ15N values increase from plant litter to fine soil organic matter; (2) the δ15N values in the soil particle-sized fractions become larger with increasing relative humidity and temperature, and the largest variation in the δ15N values is from -5.9‰ to -0.3‰; and (3) under a controlled climate, significant nitrogen isotope differences in δ15N values (Δδ15Nplant-soil) between plant litter and bulk soil organic matter were observed, with the values of 1.52 to 4.75 at various sites. Our results suggested that comparisons of Δδ15N values between bulk soil and the particle-sized fractions of soil could reveal the effect of humidity on transferring process of nitrogen from plant to soil in arid and semi-arid ecosystems.
基金supported by the National Natural Science Foundation of China (31471461, 31671655)the National Transgenic Major Project of China (2016ZX08001004-001)Shanghai Agriculture Applied Technology Development Program, China (G2014070102)
文摘Rice(Oryza sativa L.)is a major food crop worldwide.Plant height and yield are important agronomic traits of rice.Several genes regulating plant height and/or yield have been cloned.However,the molecular mechanisms coordinating plant height and yield are not fully characterized.Here,we report a novel gene,OstMAPKKK5 that encodes a truncated variant of a mitogen-activated protein kinase kinase kinase 5(OsMAPKKK5)lacking an intact kinase domain.Transgenic plants overexpressing OstMAPKKK5 in indica cultivar 9311 showed increased plant height,grain length,grain width,1000-grain weight,grain number per main panicle,and yield.Real-time quantitative PCR showed that OstMAPKKK5 was widely expressed in various tissues and developmental stages.The increased plant height and yield were attributed to enlarged cell size.Overexpression of OstMAPKKK5 led to higher contents of various forms of endogenous gibberellin(GA),especially the most common active forms,GA1,GA3,GA4.We concluded that OstMAPKKK5 positively regulates plant height and yield in rice by affecting cell size,and that its underlying mechanism is based on increased endogenous GA content.
基金supported by grants from the General Project of Natural Science Research in Anhui Province (AQKJ2015B018)Major projects of the National Natural Science Foundation of China (31590823)
文摘Fresh plant material is usually used for genome size estimation by flow cytometry(FCM). Lack of fresh material is cited as one of the main reasons for the dearth of studies on plants from remote locations.Genome sizes in fresh versus desiccated tissue of 16 Ophiopogoneae species and five model plant species were estimated. Our results indicated that desiccated tissue was suitable for genome size estimation; this method enables broader geographic sampling of plants when fresh tissue collection is not feasible. To be useful, after dessication the Ophiopogoneae sample should be green without brown or yellow markings;it should be stored in deep freezer at à80C, and the storage time should be no more than 6 months.