The distribution of crystal organic fertilizer, urea and compound fertilizer-N in soil and plant system was researched with 15N-trace under tobacco pot experiment. The results showed that the leaf yield of tobacco use...The distribution of crystal organic fertilizer, urea and compound fertilizer-N in soil and plant system was researched with 15N-trace under tobacco pot experiment. The results showed that the leaf yield of tobacco used crystal organic fertilizer was 23.1% and 14.6% higher than that of urea and compound fertilizer treatments respectively. Compound fertilizer also resulted in higher yield of 8.5 % comparing with the urea treatment. Nitrogen content of the plant from the crystal organic fertilizer treatment was 138. 6% and 145.7% as high as that of the compound fertilizer and urea treatments respectively. The absorbed N from the organic fertilizer was 25.1% and 27.9% more than that from the compound fertilizer and urea respectively. However, the absorbed N from the soil with the organic fertilizer was 47.4% and 58.3% more than that with compound fertilizer and urea respectively. The N use efficiency of the organic fertilizer was 9.4% and 10.1% higher than that of the compound fertilizer and urea. It indicated that the crystal organic fertilizer not only had high N use efficiency, but also stimulated tobacco taking up more N from soil.展开更多
Heavy metal pollution in soil-plant system is of major environmental concern on a world scale and in China in particular with the rapid development of industry. The heavy metal pollution status in soil-plant system in...Heavy metal pollution in soil-plant system is of major environmental concern on a world scale and in China in particular with the rapid development of industry. The heavy metal pollution status in soil-plant system in China, the research progress on the bioavailability of heavy metals (affecting factors, extraction methods, free-ion activity model, adsorption model, multivariate regression model, Q-I relationship, and compound pollution), and soil remediation are reviewed in the paper. Future research and monitoring is also discussed.展开更多
Soil-plant systems play an important role in sand fixing and surface protection in the arid desert of China. This study examines the ecohydrological responses after a soil-plant system change for mobile dune stabiliza...Soil-plant systems play an important role in sand fixing and surface protection in the arid desert of China. This study examines the ecohydrological responses after a soil-plant system change for mobile dune stabilization by using a series of soil hydrological experiments and ecological investigation. The study results showed that decades of succession of soil-plant system has endangered the stability of the protection system. With the accumulated water and nutrient, a bio-logical system develops in a thinner and thinner surface soil. Redistribution of precipitation has changed completely in the ecosystem. In 3–15 mm of soil, a high capacity of crust water retention ultimately limits most rainfall from infiltrating below 10–20 cm deep. When that takes place, lower plants begin to compete for water with grasses and shrubs. A drought horizon forms in 20–500 cm depth with shrub transpiration. Artificial shrubs with deep roots obtain hardly rainfall supply and are gradually eliminated from the protection system. All changes in water environment affect the structure and func-tion and stabilization of whole protection systems. It is necessary to establish a relatively stable water environment by managing the soil-plant system for constructing a sustainable protective system in arid desert.展开更多
The characteristics of vertical and horizontal variations of lead element(Pb) in soil plant system of vertical zone in Changbai Mountain National Nature Reserve(CNNR) were studied. The results showed that Pb concentr...The characteristics of vertical and horizontal variations of lead element(Pb) in soil plant system of vertical zone in Changbai Mountain National Nature Reserve(CNNR) were studied. The results showed that Pb concentrations in soils of vertical zone are all above 25 mg/kg, and the average Pb concentration of each soil zone negatively correlates its degree of variation, i.e. brown coniferous forest soil zone has the lowest average Pb concentration of four soil zones, and the highest horizontal variation; however, mountain soddy forest soil has the highest average Pb concentration, and the lowest horizontal variation; the average concentration of plant Pb of each plant zone is lower than the worldwide average level of Pb in plant(Clarke), respectively, and plant Pb content order is consistent with soil Pb content order, but their horizontal variations are different from those in soil zones, the variation of mountain tundra forest zone is highest, but Betula ermanii forest zone the lowest. Vertical variation of plant Pb is obviously higher than that in soils with variation coefficient of 89.76%; the enrichment capability of plant for Pb is depended on the plant types and the different organs of plant; parent material and parent rock, pH values, soil organic matter and soil particle fraction etc. are the main factors influencing variations of Pb content in soil plant system of vertical zone in CNNR.展开更多
This study focused on the cycling of major and trace elements in the soil-plant system in parts of Southern Benue Trough, Nigeria. Surface soil samples and cassava crop samples were collected from cultivated farmlands...This study focused on the cycling of major and trace elements in the soil-plant system in parts of Southern Benue Trough, Nigeria. Surface soil samples and cassava crop samples were collected from cultivated farmlands underlined by shaly and calcareous soils and were analysed using standard techniques. The results show that shaly soils are relatively acidic (pH, 4.8 - 6.6) with high level of organic matter content (OM, 3.2% - 8.7%) compared to calcareous soils (pH, 5.6 - 7.2;OM 1.6% - 7.0%). The soils are enriched in elemental composition relative to the world average abundances in soil. The maximum levels of K, Al, and Zn were obtained from shaly soils. The computed accumulation factors are generally <1. Elemental levels decreased in the plant parts in the order tuber > leaf > stem. Significant correlation was obtained between elemental associations of calcareous surface soils compared to that of shaly soils. R-mode factor analysis revealed the controls of soil geochemistry to include lithology, anthropogenic and environmental factors. A stepwise linear regression analysis identified soil elemental component, pH and organic matter as some of the factors influencing soil-plant metal uptake.展开更多
Malus x domestica microRNA MdmiR285N is a potential key regulator of plant immunity,as it has been predicted to target 35 RNA transcripts coding for different disease resistance proteins involved in plant defense to p...Malus x domestica microRNA MdmiR285N is a potential key regulator of plant immunity,as it has been predicted to target 35 RNA transcripts coding for different disease resistance proteins involved in plant defense to pathogens.In this study,the promoter region of MdmiR285N was isolated from the apple genome and analyzed in silico to detect potential regulatory regions controlling its transcription.A complex network of putative regulatory elements involved in plant growth and development,and in response to different hormones and stress conditions,was identified.Activity of theβ-Glucoronidase(GUS)reporter gene driven by the promoter of MdmiR285N was examined in transgenic apple,demonstrating that MdmiR285N was expressed during the vegetative growth phase.Similarly,in transgenic Arabidopsis thaliana,spatial and temporal patterns of GUS expression revealed that MdmiR285N was differentially regulated during seed germination,vegetative phase change,and reproductive development.To elucidate the role of MdmiR285N in plant immunity,MdmiR285N expression in wild-type apple plants and GUS activity in transgenic apple and Arabidopsis thaliana plants were monitored in response to Erwinia amylovora and Pseudomonas syringae pv.Tomato DC3000.A significant decrease of MdmiR285N levels and GUS expression was observed during host-pathogen infections.Overall,these data suggest that MdmiR285N is involved in the biotic stress response,plant growth,and reproductive development.展开更多
The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, sel...The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, self-tuning control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods were already verified on wind turbine systems, and important advantages may thus derive from the appropriate implementation of the same control schemes for hydroelectric plants. This represents the key point of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. In fact, it seems that investigations related with both wind and hydraulic energies present a reduced number of common aspects, thus leading to little exchange and share of possible common points. This consideration is particularly valid with reference to the more established wind area when compared to hydroelectric systems. In this way, this work recalls the models of wind turbine and hydroelectric system, and investigates the application of different control solutions. Another important point of this investigation regards the analysis of the exploited benchmark models, their control objectives, and the development of the control solutions. The working conditions of these energy conversion systems will also be taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations.展开更多
In recent time Bangladesh faces a serious problem of soil pollution due to plastic contamination. However, the degree of the extent to which the effects of plastics on plant growth occur is not properly identified. An...In recent time Bangladesh faces a serious problem of soil pollution due to plastic contamination. However, the degree of the extent to which the effects of plastics on plant growth occur is not properly identified. An experiment was conducted to measure the effects of mixed plastic (polyethylene and disposable plastic glass) on the growth of </span><i><span style="font-family:Verdana;">Amaranthus</span></i> <i><span style="font-family:Verdana;">viridis</span></i><span style="font-family:Verdana;">. Different doses of mixed plastics (T0, T1, T2, and T3) were applied with a fixed amount of soil for each of the treatments e.g., T0 (control), T1 (10 gm mixed plastics/3kg soil), T2 (15 gm mixed plastics/3kg soil) and T3 (20 gm mixed plastic/3kg soil), and the growth response of </span><i><span style="font-family:Verdana;">Amaranthus</span></i> <i><span style="font-family:Verdana;">viridis</span></i><span style="font-family:Verdana;"> against plastic was observed for six consecutive weeks. The growth was measured in terms of plant height and girth diameter. The results showed that the presence of mixed plastic had a significant effect on the growth of </span><i><span style="font-family:Verdana;">Amaranthus</span></i> <i><span style="font-family:Verdana;">viridis</span></i><span style="font-family:Verdana;"> and particularly in treatment T3 (3 kg soil/20gm mixed plastic), the plants showed a slower growth response compared to control and the rest of the treatments applied in case of both plant height as well as girth diameter. The statistical analysis (one-way Analysis of Variance) also proved the significance of the treatments (p-values < 0.05) for six consecutive weeks. The experiment was successfully able to set an index on which plastics had their effects on the growth of green amaranth. In addition, the obtained data will be helpful in future research of the study in determining the possible effects of plastic on plant growth viz. green amaranth.展开更多
Availability of soil arsenic (As) and plant As at various levels of zinc (Zn) and As applications were examined. A pot-culture experiment with a leafy vegetable, Kalmi (Ipomoea aquatica), on an Inceptisols, was conduc...Availability of soil arsenic (As) and plant As at various levels of zinc (Zn) and As applications were examined. A pot-culture experiment with a leafy vegetable, Kalmi (Ipomoea aquatica), on an Inceptisols, was conducted where As was applied with irrigation water at the rates of 0 mg/L (As control), 0.5 mg/L, 1 mg/L and 2 mg/L and Zn was added to the soil as ZnCl2 solution at the rate of 0 mg/L (Zn control), 1 mg/L, 2 mg/L and 3 mg/L during pot preparation. The experiment was conducted in triplicates for 45 days till the plants were grown to maturity. At the end of the experiment the remedial effect of Zn on As toxicity was examined and as such, yield parameters, As and Zn accumulation in Kalmi plants, residual concentrations of As and Zn in soils and plants were measured. It appeared from the present study that there exists an antagonistic relationship between Zn and As i.e., Zn in soils was found to reduce As availability in soils as well as its accumulation in plants, particularly at an elevated application rate of 3 mg/L Zn. The findings could be used as a strategy to mitigate arsenic toxicity in As contaminated soils.展开更多
study was carried out on the transfer of native and added Ni towards plant both in different soils andat different time by using  ̄(63)Ni tracer technique. The transfer of added Ni in soil was greater than native Nian...study was carried out on the transfer of native and added Ni towards plant both in different soils andat different time by using  ̄(63)Ni tracer technique. The transfer of added Ni in soil was greater than native Niand declined as time increased. The mobility was greater for soluble plus exchangeable fraction of soil Nibut very smaller for residual and Fe/Mn oxide bound fractions. These indicated that Ni was more mobileand more harmful in soils with a low pH and/or low content of Fe/Mn oxides.展开更多
The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of t...The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering.展开更多
Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agric...Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agricultural monitoring,they often face limitations such as high power consumption,restricted mobility,complex deployment requirements,and inadequate security measures for data access.This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings.Our system strategically combines power efficiency,portability,and secure access capabilities,assisting farmers in monitoring and tracking crop environmental conditions.The proposed system includes a remote camera that captures images of surrounding plants and a sensor module that regularly monitors various environmental factors,including temperature,humidity,and soil moisture.We implement power management strategies to minimize energy consumption compared to existing solutions.Unlike conventional systems,our implementation utilizes the Amazon Web Services(AWS)cloud platform for reliable data storage and processing while incorporating comprehensive security measures,including Two-Factor Authentication(2FA)and JSON Web Tokens(JWT),features often overlooked in current agricultural IoT solutions.Users can access this secure monitoring system via a developed Android application,providing convenient mobile access to the gathered plant data.We validate our system’s advantages by implementing it with two potted garlic plants on Okayama University’s rooftop.Our evaluation demonstrates high sensor reliabil-ity,with strong correlations between sensor readings and reference data,achieving determination coefficients(R2)of 0.979 for temperature and 0.750 for humidity measurements.The implemented power management strategies extend battery life to 10 days on a single charge,significantly outperforming existing systems that typically require daily recharging.Furthermore,our dual-layer security implementation utilizing 2FA and JWT successfully protects sensitive agricultural data from unauthorized access.展开更多
Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradient...Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.展开更多
To establish an efficient regeneration method for the rare and endangered plant Mussaenda anomala to address problems regarding its reproductive obstacles and scarce populations.In this study,the terminal buds,axillar...To establish an efficient regeneration method for the rare and endangered plant Mussaenda anomala to address problems regarding its reproductive obstacles and scarce populations.In this study,the terminal buds,axillary buds,stem segments with two axillary buds,stem segments with two axillary buds and one terminal bud,and leaves of M.anomala were used as explants.The effects of different explants and disinfection methods,plant growth regulators and substrates on plant regeneration were explored.The following results were obtained:(1)The terminal bud was a suitable explant for M.anomala tissue culture,and the disinfection method utilized was treatment with 0.2%HgCl2 for 8 min.(2)Initiate medium:MS basic medium supplemented with 0.5 mg/L 6-BA and 0.2 mg/L IBA for the high germination rate(100%)and the maximum bud height(1.70 cm)of the terminal bud.(3)Proliferation medium:MS basic medium supplemented with 3.0 mg/L 6-BA and 0.2 mg/L IBA for a high proliferation rate(96%)and proliferation time(6.0)of terminal buds.(4)Proliferation medium supplemented with 0.7 mg/L GA3 significantly increased the bud heights of multiple buds.(5)Rooting medium:MS basic medium supplemented with 0.5 mg/L IBA and 0.5 mg/L IAA for a high rooting rate(88%),root number(12.0)and root length(5.07 cm).(6)The optimal substrate for seedling acclimation and transplanting was perlite:vermiculite(1:1),which resulted in the highest survival rate(97%)and plant height(5.89 cm),as well as better growth potential for seedlings.The surfaces of M.anomala explants are densely covered with trichome,which increased the difficulty of disinfection;the plant growth regulators directly affected the growth and development in the regeneration process of M.anomala,and the substrate significantly affected the survival rate and height growth for seedling acclimation.展开更多
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvl...The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvlang'variety under a continuous planting regime of one,four,and seven years,and a replanting regime of one and four years.Under the condition of continuous planting,with the increase of number of years,pH,ammonium nitrogen,and nitrate nitrogen decreased in the rhizosphere and non-rhizosphere soils,whereas organic matter,available phosphorus and potassium,enzyme activities,and the number of bacteria,fungi,and actinomycetes increased.Under the condition of replanting,with the increase of number of years,fungi and actinomycetes in both soils increased,while pH,organic matter,nutrients,enzyme activities,and bacterial number decreased.pH,organic matter,nutrient content,enzyme activity and the number of bacterial were lower in soil replanted for four years,whereas the abundance of fungi and actinomycetes was higher,altering the soil from“bacterial high-fertility”to“fungal low-fertility”with increasing years of replanting.The activity of antioxidant enzymes and MDA content in roots of peony in replanting were higher than those in continuous planting,while the content of osmotic regulatory substances in replanting was lower than that in continuous planting.The results showed that there were no obvious adverse factors in soil during seven years of continuous planting,and herbaceous peony could maintain normal growth and development.However,soils after four years of replanting were not suitable for herbaceous peony growth.Benzoic acid increased with years of replanting,which potentially caused replanting problems.This study provides a theoretical basis for understanding the mechanism of replanting problems in the herbaceous peony.展开更多
We examined how afforestation patterns impact carbon(C),nitrogen(N),and phosphorus(P)stoichiometry in the plant-litter-soil system.Plant leaf,branch,stem,and root,litter,and soil samples were collected from mixedspeci...We examined how afforestation patterns impact carbon(C),nitrogen(N),and phosphorus(P)stoichiometry in the plant-litter-soil system.Plant leaf,branch,stem,and root,litter,and soil samples were collected from mixedspecies plantations of Robinia pseudoacacia with Amygdalus davidiana(RPAD),R.pseudoacacia with Armeniaca sibirica(RPAS),and monocultures of R.pseudoacacia(RP),A.davidiana(AD),and A.sibirica(AS)in the Loess Hilly Region.The results showed that in mixed-species plantations,R.pseudoacacia had lower leaf N and P concentrations than in monocultures,while both A.davidiana and A.sibirica had higher leaf N and P concentrations.Soil P limited tree growth in both afforestation models.Mixing R.pseudoacacia with A.davidiana or A.sibirica reduced N-limitation during litter decomposition.Average soil total N and P concentrations were higher in RPAS than in RPAD,and both were higher than the corresponding monocultures.The average soil C:N ratio was the smallest in RPAS,while the average soil C:P ratio was larger in RPAS than in RP.A positive correlation between N and P concentrations,and between C:N and C:P ratios,was found in litter and all plant organs of mono-and mixedstands.Alternatively,for N concentration and C:N ratio,the correlations between plant(i.e.,leaf,branch,root)and litter and between plant and soil were inverse between plantation types.RPAD has an increased litter decomposition rate to release N and P,while RPAS has a faster rate of soil N mineralization.RPAD was the best plantation(mixed)to improve biogeochemical cycling,as soil nutrient restrictions,particularly for P-limitation,on trees growth were alleviated.This study thus provides insights into suitable tree selection and management by revealing C:N:P stoichiometry in the plant-litter-soil system under different afforestation patterns.展开更多
Lithium's(Li)ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry.Li enigmatic entry into the terrestrial food chain raises many questions...Lithium's(Li)ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry.Li enigmatic entry into the terrestrial food chain raises many questions and uncertainties that may pose a grave threat to living biota.We examined the leverage existing published articles regarding advances in global Li resources,interplay with plants,and possible involvement with living organisms,especially humans and animals.Globally,Li concentration(<10 e300 mg kg1)is detected in agricultural soil,and their pollutant levels vary with space and time.High mobility of Li results in higher accumulation in plants,but the clear mechanisms and specific functions remain unknown.Our assessment reveals the causal relationship between Li level and biota health.For example,lower Li intake(<0.6 mM in serum)leads to mental disorders,while higher intake(>1.5 mM in serum)induces thyroid,stomach,kidney,and reproductive system dysfunctions in humans and animals.However,there is a serious knowledge gap regarding Li regulatory standards in environmental compartments,and mechanistic approaches to unveil its consequences are needed.Furthermore,aggressive efforts are required to define optimum levels of Li for the normal functioning of animals,plants,and humans.This review is designed to revitalize the current status of Li research and identify the key knowledge gaps to fight back against the mountainous challenges of Li during the recent digital revolution.Additionally,we propose pathways to overcome Li problems and develop a strategy for effective,safe,and acceptable applications.展开更多
文摘The distribution of crystal organic fertilizer, urea and compound fertilizer-N in soil and plant system was researched with 15N-trace under tobacco pot experiment. The results showed that the leaf yield of tobacco used crystal organic fertilizer was 23.1% and 14.6% higher than that of urea and compound fertilizer treatments respectively. Compound fertilizer also resulted in higher yield of 8.5 % comparing with the urea treatment. Nitrogen content of the plant from the crystal organic fertilizer treatment was 138. 6% and 145.7% as high as that of the compound fertilizer and urea treatments respectively. The absorbed N from the organic fertilizer was 25.1% and 27.9% more than that from the compound fertilizer and urea respectively. However, the absorbed N from the soil with the organic fertilizer was 47.4% and 58.3% more than that with compound fertilizer and urea respectively. The N use efficiency of the organic fertilizer was 9.4% and 10.1% higher than that of the compound fertilizer and urea. It indicated that the crystal organic fertilizer not only had high N use efficiency, but also stimulated tobacco taking up more N from soil.
文摘Heavy metal pollution in soil-plant system is of major environmental concern on a world scale and in China in particular with the rapid development of industry. The heavy metal pollution status in soil-plant system in China, the research progress on the bioavailability of heavy metals (affecting factors, extraction methods, free-ion activity model, adsorption model, multivariate regression model, Q-I relationship, and compound pollution), and soil remediation are reviewed in the paper. Future research and monitoring is also discussed.
基金supported by the National Key Tech-nologies R&D Program in the 10th Five-year Plan (2004BA 901A 15)the Knowledge Innovation Project of The Chinese Academy of Sciences (No. KZCX1-09)by the Key Program of National Natural Science Foundation of China (Grant No. 90702001)
文摘Soil-plant systems play an important role in sand fixing and surface protection in the arid desert of China. This study examines the ecohydrological responses after a soil-plant system change for mobile dune stabilization by using a series of soil hydrological experiments and ecological investigation. The study results showed that decades of succession of soil-plant system has endangered the stability of the protection system. With the accumulated water and nutrient, a bio-logical system develops in a thinner and thinner surface soil. Redistribution of precipitation has changed completely in the ecosystem. In 3–15 mm of soil, a high capacity of crust water retention ultimately limits most rainfall from infiltrating below 10–20 cm deep. When that takes place, lower plants begin to compete for water with grasses and shrubs. A drought horizon forms in 20–500 cm depth with shrub transpiration. Artificial shrubs with deep roots obtain hardly rainfall supply and are gradually eliminated from the protection system. All changes in water environment affect the structure and func-tion and stabilization of whole protection systems. It is necessary to establish a relatively stable water environment by managing the soil-plant system for constructing a sustainable protective system in arid desert.
基金WetlandInnovationItemofChineseAcademyofSciences (No .ZKHZ 3 0 6 )
文摘The characteristics of vertical and horizontal variations of lead element(Pb) in soil plant system of vertical zone in Changbai Mountain National Nature Reserve(CNNR) were studied. The results showed that Pb concentrations in soils of vertical zone are all above 25 mg/kg, and the average Pb concentration of each soil zone negatively correlates its degree of variation, i.e. brown coniferous forest soil zone has the lowest average Pb concentration of four soil zones, and the highest horizontal variation; however, mountain soddy forest soil has the highest average Pb concentration, and the lowest horizontal variation; the average concentration of plant Pb of each plant zone is lower than the worldwide average level of Pb in plant(Clarke), respectively, and plant Pb content order is consistent with soil Pb content order, but their horizontal variations are different from those in soil zones, the variation of mountain tundra forest zone is highest, but Betula ermanii forest zone the lowest. Vertical variation of plant Pb is obviously higher than that in soils with variation coefficient of 89.76%; the enrichment capability of plant for Pb is depended on the plant types and the different organs of plant; parent material and parent rock, pH values, soil organic matter and soil particle fraction etc. are the main factors influencing variations of Pb content in soil plant system of vertical zone in CNNR.
文摘This study focused on the cycling of major and trace elements in the soil-plant system in parts of Southern Benue Trough, Nigeria. Surface soil samples and cassava crop samples were collected from cultivated farmlands underlined by shaly and calcareous soils and were analysed using standard techniques. The results show that shaly soils are relatively acidic (pH, 4.8 - 6.6) with high level of organic matter content (OM, 3.2% - 8.7%) compared to calcareous soils (pH, 5.6 - 7.2;OM 1.6% - 7.0%). The soils are enriched in elemental composition relative to the world average abundances in soil. The maximum levels of K, Al, and Zn were obtained from shaly soils. The computed accumulation factors are generally <1. Elemental levels decreased in the plant parts in the order tuber > leaf > stem. Significant correlation was obtained between elemental associations of calcareous surface soils compared to that of shaly soils. R-mode factor analysis revealed the controls of soil geochemistry to include lithology, anthropogenic and environmental factors. A stepwise linear regression analysis identified soil elemental component, pH and organic matter as some of the factors influencing soil-plant metal uptake.
文摘Malus x domestica microRNA MdmiR285N is a potential key regulator of plant immunity,as it has been predicted to target 35 RNA transcripts coding for different disease resistance proteins involved in plant defense to pathogens.In this study,the promoter region of MdmiR285N was isolated from the apple genome and analyzed in silico to detect potential regulatory regions controlling its transcription.A complex network of putative regulatory elements involved in plant growth and development,and in response to different hormones and stress conditions,was identified.Activity of theβ-Glucoronidase(GUS)reporter gene driven by the promoter of MdmiR285N was examined in transgenic apple,demonstrating that MdmiR285N was expressed during the vegetative growth phase.Similarly,in transgenic Arabidopsis thaliana,spatial and temporal patterns of GUS expression revealed that MdmiR285N was differentially regulated during seed germination,vegetative phase change,and reproductive development.To elucidate the role of MdmiR285N in plant immunity,MdmiR285N expression in wild-type apple plants and GUS activity in transgenic apple and Arabidopsis thaliana plants were monitored in response to Erwinia amylovora and Pseudomonas syringae pv.Tomato DC3000.A significant decrease of MdmiR285N levels and GUS expression was observed during host-pathogen infections.Overall,these data suggest that MdmiR285N is involved in the biotic stress response,plant growth,and reproductive development.
文摘The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, self-tuning control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods were already verified on wind turbine systems, and important advantages may thus derive from the appropriate implementation of the same control schemes for hydroelectric plants. This represents the key point of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. In fact, it seems that investigations related with both wind and hydraulic energies present a reduced number of common aspects, thus leading to little exchange and share of possible common points. This consideration is particularly valid with reference to the more established wind area when compared to hydroelectric systems. In this way, this work recalls the models of wind turbine and hydroelectric system, and investigates the application of different control solutions. Another important point of this investigation regards the analysis of the exploited benchmark models, their control objectives, and the development of the control solutions. The working conditions of these energy conversion systems will also be taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations.
文摘In recent time Bangladesh faces a serious problem of soil pollution due to plastic contamination. However, the degree of the extent to which the effects of plastics on plant growth occur is not properly identified. An experiment was conducted to measure the effects of mixed plastic (polyethylene and disposable plastic glass) on the growth of </span><i><span style="font-family:Verdana;">Amaranthus</span></i> <i><span style="font-family:Verdana;">viridis</span></i><span style="font-family:Verdana;">. Different doses of mixed plastics (T0, T1, T2, and T3) were applied with a fixed amount of soil for each of the treatments e.g., T0 (control), T1 (10 gm mixed plastics/3kg soil), T2 (15 gm mixed plastics/3kg soil) and T3 (20 gm mixed plastic/3kg soil), and the growth response of </span><i><span style="font-family:Verdana;">Amaranthus</span></i> <i><span style="font-family:Verdana;">viridis</span></i><span style="font-family:Verdana;"> against plastic was observed for six consecutive weeks. The growth was measured in terms of plant height and girth diameter. The results showed that the presence of mixed plastic had a significant effect on the growth of </span><i><span style="font-family:Verdana;">Amaranthus</span></i> <i><span style="font-family:Verdana;">viridis</span></i><span style="font-family:Verdana;"> and particularly in treatment T3 (3 kg soil/20gm mixed plastic), the plants showed a slower growth response compared to control and the rest of the treatments applied in case of both plant height as well as girth diameter. The statistical analysis (one-way Analysis of Variance) also proved the significance of the treatments (p-values < 0.05) for six consecutive weeks. The experiment was successfully able to set an index on which plastics had their effects on the growth of green amaranth. In addition, the obtained data will be helpful in future research of the study in determining the possible effects of plastic on plant growth viz. green amaranth.
文摘Availability of soil arsenic (As) and plant As at various levels of zinc (Zn) and As applications were examined. A pot-culture experiment with a leafy vegetable, Kalmi (Ipomoea aquatica), on an Inceptisols, was conducted where As was applied with irrigation water at the rates of 0 mg/L (As control), 0.5 mg/L, 1 mg/L and 2 mg/L and Zn was added to the soil as ZnCl2 solution at the rate of 0 mg/L (Zn control), 1 mg/L, 2 mg/L and 3 mg/L during pot preparation. The experiment was conducted in triplicates for 45 days till the plants were grown to maturity. At the end of the experiment the remedial effect of Zn on As toxicity was examined and as such, yield parameters, As and Zn accumulation in Kalmi plants, residual concentrations of As and Zn in soils and plants were measured. It appeared from the present study that there exists an antagonistic relationship between Zn and As i.e., Zn in soils was found to reduce As availability in soils as well as its accumulation in plants, particularly at an elevated application rate of 3 mg/L Zn. The findings could be used as a strategy to mitigate arsenic toxicity in As contaminated soils.
文摘study was carried out on the transfer of native and added Ni towards plant both in different soils andat different time by using  ̄(63)Ni tracer technique. The transfer of added Ni in soil was greater than native Niand declined as time increased. The mobility was greater for soluble plus exchangeable fraction of soil Nibut very smaller for residual and Fe/Mn oxide bound fractions. These indicated that Ni was more mobileand more harmful in soils with a low pH and/or low content of Fe/Mn oxides.
基金supported by the National Natural Science Foundation of China(32001532 and 31860411)the National Key Research and Development Program of China,(2022YFF1000020)+1 种基金Hunan Seed Industry Innovation Project(2021NK1012)the Yunnan Tobacco Company Project(2020530000241009)。
文摘The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering.
基金supported by the budget of GIC project at Okayama University.
文摘Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agricultural monitoring,they often face limitations such as high power consumption,restricted mobility,complex deployment requirements,and inadequate security measures for data access.This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings.Our system strategically combines power efficiency,portability,and secure access capabilities,assisting farmers in monitoring and tracking crop environmental conditions.The proposed system includes a remote camera that captures images of surrounding plants and a sensor module that regularly monitors various environmental factors,including temperature,humidity,and soil moisture.We implement power management strategies to minimize energy consumption compared to existing solutions.Unlike conventional systems,our implementation utilizes the Amazon Web Services(AWS)cloud platform for reliable data storage and processing while incorporating comprehensive security measures,including Two-Factor Authentication(2FA)and JSON Web Tokens(JWT),features often overlooked in current agricultural IoT solutions.Users can access this secure monitoring system via a developed Android application,providing convenient mobile access to the gathered plant data.We validate our system’s advantages by implementing it with two potted garlic plants on Okayama University’s rooftop.Our evaluation demonstrates high sensor reliabil-ity,with strong correlations between sensor readings and reference data,achieving determination coefficients(R2)of 0.979 for temperature and 0.750 for humidity measurements.The implemented power management strategies extend battery life to 10 days on a single charge,significantly outperforming existing systems that typically require daily recharging.Furthermore,our dual-layer security implementation utilizing 2FA and JWT successfully protects sensitive agricultural data from unauthorized access.
基金carried out in the framework of the 1331 Project of Cultural Ecology Collaborative Innovation Center in Wutai Mountain (00000342)co-financed by Program for the Philosophy and Social Sciences Research of Higher Learning Institutions of Shanxi (2022J027)+1 种基金Applied Basic Research Project of Shanxi Province (202203021221225)Basic Research Project of Xinzhou Science and Technology Bureau (20230501)。
文摘Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.
基金funded by the National Natural Science Foundation of China–Guizhou Provincial People’s Government Karst Science Research Center Project(U1812401)the National Natural Science Foundation of China(31760124),the Department of Education of Guizhou Province(grant code qianjiaoji(2022)136)the New Seedling Program of Guizhou Normal University(grant code 2021-B05).
文摘To establish an efficient regeneration method for the rare and endangered plant Mussaenda anomala to address problems regarding its reproductive obstacles and scarce populations.In this study,the terminal buds,axillary buds,stem segments with two axillary buds,stem segments with two axillary buds and one terminal bud,and leaves of M.anomala were used as explants.The effects of different explants and disinfection methods,plant growth regulators and substrates on plant regeneration were explored.The following results were obtained:(1)The terminal bud was a suitable explant for M.anomala tissue culture,and the disinfection method utilized was treatment with 0.2%HgCl2 for 8 min.(2)Initiate medium:MS basic medium supplemented with 0.5 mg/L 6-BA and 0.2 mg/L IBA for the high germination rate(100%)and the maximum bud height(1.70 cm)of the terminal bud.(3)Proliferation medium:MS basic medium supplemented with 3.0 mg/L 6-BA and 0.2 mg/L IBA for a high proliferation rate(96%)and proliferation time(6.0)of terminal buds.(4)Proliferation medium supplemented with 0.7 mg/L GA3 significantly increased the bud heights of multiple buds.(5)Rooting medium:MS basic medium supplemented with 0.5 mg/L IBA and 0.5 mg/L IAA for a high rooting rate(88%),root number(12.0)and root length(5.07 cm).(6)The optimal substrate for seedling acclimation and transplanting was perlite:vermiculite(1:1),which resulted in the highest survival rate(97%)and plant height(5.89 cm),as well as better growth potential for seedlings.The surfaces of M.anomala explants are densely covered with trichome,which increased the difficulty of disinfection;the plant growth regulators directly affected the growth and development in the regeneration process of M.anomala,and the substrate significantly affected the survival rate and height growth for seedling acclimation.
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
基金supported by grants from the National Natural Science Foundation of China(Grant No.31670663).
文摘The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvlang'variety under a continuous planting regime of one,four,and seven years,and a replanting regime of one and four years.Under the condition of continuous planting,with the increase of number of years,pH,ammonium nitrogen,and nitrate nitrogen decreased in the rhizosphere and non-rhizosphere soils,whereas organic matter,available phosphorus and potassium,enzyme activities,and the number of bacteria,fungi,and actinomycetes increased.Under the condition of replanting,with the increase of number of years,fungi and actinomycetes in both soils increased,while pH,organic matter,nutrients,enzyme activities,and bacterial number decreased.pH,organic matter,nutrient content,enzyme activity and the number of bacterial were lower in soil replanted for four years,whereas the abundance of fungi and actinomycetes was higher,altering the soil from“bacterial high-fertility”to“fungal low-fertility”with increasing years of replanting.The activity of antioxidant enzymes and MDA content in roots of peony in replanting were higher than those in continuous planting,while the content of osmotic regulatory substances in replanting was lower than that in continuous planting.The results showed that there were no obvious adverse factors in soil during seven years of continuous planting,and herbaceous peony could maintain normal growth and development.However,soils after four years of replanting were not suitable for herbaceous peony growth.Benzoic acid increased with years of replanting,which potentially caused replanting problems.This study provides a theoretical basis for understanding the mechanism of replanting problems in the herbaceous peony.
基金funded by the National Nature Science Foundation of China (No.41771556)funded by the Spanish Government Grants PID2020-115770RB-I00 and TED2021-132627B–I00+2 种基金funded by the Spanish MCIN,AEI/10.13039/501100011033the European Union NextGenerationEU/PRTR,the Catalan government grant SGR2021-1333the Fundaci on Ram on Areces grant CIVP20A6621
文摘We examined how afforestation patterns impact carbon(C),nitrogen(N),and phosphorus(P)stoichiometry in the plant-litter-soil system.Plant leaf,branch,stem,and root,litter,and soil samples were collected from mixedspecies plantations of Robinia pseudoacacia with Amygdalus davidiana(RPAD),R.pseudoacacia with Armeniaca sibirica(RPAS),and monocultures of R.pseudoacacia(RP),A.davidiana(AD),and A.sibirica(AS)in the Loess Hilly Region.The results showed that in mixed-species plantations,R.pseudoacacia had lower leaf N and P concentrations than in monocultures,while both A.davidiana and A.sibirica had higher leaf N and P concentrations.Soil P limited tree growth in both afforestation models.Mixing R.pseudoacacia with A.davidiana or A.sibirica reduced N-limitation during litter decomposition.Average soil total N and P concentrations were higher in RPAS than in RPAD,and both were higher than the corresponding monocultures.The average soil C:N ratio was the smallest in RPAS,while the average soil C:P ratio was larger in RPAS than in RP.A positive correlation between N and P concentrations,and between C:N and C:P ratios,was found in litter and all plant organs of mono-and mixedstands.Alternatively,for N concentration and C:N ratio,the correlations between plant(i.e.,leaf,branch,root)and litter and between plant and soil were inverse between plantation types.RPAD has an increased litter decomposition rate to release N and P,while RPAS has a faster rate of soil N mineralization.RPAD was the best plantation(mixed)to improve biogeochemical cycling,as soil nutrient restrictions,particularly for P-limitation,on trees growth were alleviated.This study thus provides insights into suitable tree selection and management by revealing C:N:P stoichiometry in the plant-litter-soil system under different afforestation patterns.
基金funded by the The 111 project of the Education Ministry of China(B18053)The National Natural Science Foundation(32130081).
文摘Lithium's(Li)ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry.Li enigmatic entry into the terrestrial food chain raises many questions and uncertainties that may pose a grave threat to living biota.We examined the leverage existing published articles regarding advances in global Li resources,interplay with plants,and possible involvement with living organisms,especially humans and animals.Globally,Li concentration(<10 e300 mg kg1)is detected in agricultural soil,and their pollutant levels vary with space and time.High mobility of Li results in higher accumulation in plants,but the clear mechanisms and specific functions remain unknown.Our assessment reveals the causal relationship between Li level and biota health.For example,lower Li intake(<0.6 mM in serum)leads to mental disorders,while higher intake(>1.5 mM in serum)induces thyroid,stomach,kidney,and reproductive system dysfunctions in humans and animals.However,there is a serious knowledge gap regarding Li regulatory standards in environmental compartments,and mechanistic approaches to unveil its consequences are needed.Furthermore,aggressive efforts are required to define optimum levels of Li for the normal functioning of animals,plants,and humans.This review is designed to revitalize the current status of Li research and identify the key knowledge gaps to fight back against the mountainous challenges of Li during the recent digital revolution.Additionally,we propose pathways to overcome Li problems and develop a strategy for effective,safe,and acceptable applications.