Diamond-like carbon (DLC) films were successfully deposited on Ti- 50.8 at% Ni using plasma based ion implantation (PBII) technique. The influence of the pulsed negative bias voltage applied to the substrate from...Diamond-like carbon (DLC) films were successfully deposited on Ti- 50.8 at% Ni using plasma based ion implantation (PBII) technique. The influence of the pulsed negative bias voltage applied to the substrate from 12 kV to 40 kV on the microstracture, nano-indentation hardness and Young' s modulus, the surface characteristics and corrosion resistant property as well as hemocompatibility were investigated. The experimental resalts showed that C 1 s peak depended heavily on the bias voltage. With the increase of bias voltage, the ratio of sp2 / sp3 first decreased, reaching a minimum value at 20 kV, and then increased. The DLC coating deposited at 20 kV showed the highest hardness and elastic modulus values as a result of lower sp2/sp3 ratio. The RMS values first decreased from 7.202nm(12 kV) to 5.279 nm(20 kV), and then increased to 11.449 nm(30 kV) and 7.060 nm( 40 kV). The uncoated TiNi alloy showed severe pitting corrosion, due to the presence of Cl-ions in the solution. On the contrary, the DLC coated sample showed very little pitting corrosion and behaved better corrosion resistant property especially for the specimens deposited at 20 kV bias voltages. The platelet adhesion test show that the hemocompatibility of DLC coated TiNi alloy is much better than that of bare TiNi alloy, and the hemocompatibility performance of DLC coated TiNi alloy deposited at 20 kV is superior to that of other coated specimens.展开更多
The implantation of Cu into Si substrate was carried out by plasma based ion implantation (PBII) using unbalanced magnetron sputtering (UBMS) cathode as the metal plasma source. The different pulse bias ( U p) and the...The implantation of Cu into Si substrate was carried out by plasma based ion implantation (PBII) using unbalanced magnetron sputtering (UBMS) cathode as the metal plasma source. The different pulse bias ( U p) and the distance between the cathode and the samples ( d s-t ) were chosen to research the characteristics of this method. The results show that the implantation of metal ions can be realized by the metal plasma source of UBMS cathode. The physical process such as the metal ion pure implantation, the gas ion implantation, the recoil implantation of the metal atoms, the deposition of the metal particles and the re sputtering of the metal film depend on the energy, dose and deposition rate of the ions (Cu +, Ar +). The metal plasma based ion implantation of Cu into Si substrate is favored by selecting higher U p (60 kV) and larger d s-t (200 mm). [展开更多
文摘Diamond-like carbon (DLC) films were successfully deposited on Ti- 50.8 at% Ni using plasma based ion implantation (PBII) technique. The influence of the pulsed negative bias voltage applied to the substrate from 12 kV to 40 kV on the microstracture, nano-indentation hardness and Young' s modulus, the surface characteristics and corrosion resistant property as well as hemocompatibility were investigated. The experimental resalts showed that C 1 s peak depended heavily on the bias voltage. With the increase of bias voltage, the ratio of sp2 / sp3 first decreased, reaching a minimum value at 20 kV, and then increased. The DLC coating deposited at 20 kV showed the highest hardness and elastic modulus values as a result of lower sp2/sp3 ratio. The RMS values first decreased from 7.202nm(12 kV) to 5.279 nm(20 kV), and then increased to 11.449 nm(30 kV) and 7.060 nm( 40 kV). The uncoated TiNi alloy showed severe pitting corrosion, due to the presence of Cl-ions in the solution. On the contrary, the DLC coated sample showed very little pitting corrosion and behaved better corrosion resistant property especially for the specimens deposited at 20 kV bias voltages. The platelet adhesion test show that the hemocompatibility of DLC coated TiNi alloy is much better than that of bare TiNi alloy, and the hemocompatibility performance of DLC coated TiNi alloy deposited at 20 kV is superior to that of other coated specimens.
文摘The implantation of Cu into Si substrate was carried out by plasma based ion implantation (PBII) using unbalanced magnetron sputtering (UBMS) cathode as the metal plasma source. The different pulse bias ( U p) and the distance between the cathode and the samples ( d s-t ) were chosen to research the characteristics of this method. The results show that the implantation of metal ions can be realized by the metal plasma source of UBMS cathode. The physical process such as the metal ion pure implantation, the gas ion implantation, the recoil implantation of the metal atoms, the deposition of the metal particles and the re sputtering of the metal film depend on the energy, dose and deposition rate of the ions (Cu +, Ar +). The metal plasma based ion implantation of Cu into Si substrate is favored by selecting higher U p (60 kV) and larger d s-t (200 mm). [