期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The mechanism study of low-pressure air plasma cleaning on large-aperture optical surface unraveled by experiment and reactive molecular dynamics simulation 被引量:1
1
作者 Yuhai LI Qingshun BAI +9 位作者 Yuheng GUAN Hao LIU Peng ZHANG Buerlike BATELIBIEKE Rongqi SHEN Lihua LU Xiaodong YUAN Xinxiang MIAO Wei HAN Caizhen YAO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第6期77-87,共11页
Low-pressure air plasma cleaning is an effective method for removing organic contaminants on large-aperture optical components in situ in the inertial confinement fusion facility.Chemical reactions play a significant ... Low-pressure air plasma cleaning is an effective method for removing organic contaminants on large-aperture optical components in situ in the inertial confinement fusion facility.Chemical reactions play a significant role in plasma cleaning,which is a complex process involving abundant bond cleavage and species generation.In this work,experiments and reactive molecular dynamics simulations were carried out to unravel the reaction mechanism between the benchmark organic contaminants of dibutyl phthalate and air plasma.The optical emission spectroscopy was used to study the overall evolution behaviors of excited molecular species and radical signals from air plasma as a reference to simulations.Detailed reaction pathways were revealed and characterized,and specific intermediate radicals and products were analyzed during experiments and simulation.The reactive species in the air plasma,such as O,HO_(2)and O_(3)radicals,played a crucial role in cleaving organic molecular structures.Together,our findings provide an atomic-level understanding of complex reaction processes of low-pressure air plasma cleaning mechanisms and are essential for its application in industrial plasma cleaning. 展开更多
关键词 organic contaminants large-aperture optical components low-pressure air plasma plasma cleaning reactive species reactive molecular dynamics
下载PDF
Cleaning of nitrogen-containing carbon contamination by atmospheric pressure plasma jet 被引量:1
2
作者 Li YANG Sishu WANG +8 位作者 Andong WU Bo CHEN Jianjun CHEN Hongbin WANG Shuwei CHEN Jianjun WEI Kun ZHANG Zongbiao YE Fujun GOU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第10期127-138,共12页
Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sic... Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices. 展开更多
关键词 N-containing C(C–N)film plasma-assisted chemical vapor deposition He-plasma irradiation atmospheric pressure plasma jet plasma cleaning
下载PDF
Nonequilibrium Atmospheric Pressure Ar/O_2 Plasma Jet:Properties and Application to Surface Cleaning 被引量:2
3
作者 金英 任春生 +1 位作者 杨亮 张家良 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第2期168-172,共5页
In this study an atmospheric pressure Ar/O_2 plasma jet is generated to study the effects of applied voltage and gas flux rate to the behavior of discharge and the metal surface cleaning.The increase in applied voltag... In this study an atmospheric pressure Ar/O_2 plasma jet is generated to study the effects of applied voltage and gas flux rate to the behavior of discharge and the metal surface cleaning.The increase in applied voltage leads to increases of the root mean square(rms) current,the input power and the gas temperature.Furthermore,the optical emission spectra show that the emission intensities of metastable argon and atomic oxygen increase with increasing applied voltage.However,the increase in gas flux rate leads to a reduction of the rms current,the input power and the gas temperature.Furthermore,the emission intensities of metastable argon and atomic oxygen decrease when gas flux rate increases.Contact angles are measured to estimate the cleaning performance,and the results show that the increase of applied voltage can improve the cleaning performance.Nevertheless,the increase of gas flux rate cannot improve the cleaning performance.Contact angles are compared for different input powers and gas flux rates to search for a better understanding of the major mechanism for surface cleaning by plasma jets. 展开更多
关键词 nonequilibrium plasma jet gas flux rate plasma cleaning the temperature of gas
下载PDF
Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces 被引量:1
4
作者 韩敬华 罗莉 +2 位作者 张玉波 胡锐峰 冯国英 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期423-428,共6页
Particles can be removed from a silicon surface by means of irradiation and a laser plasma shock wave.The particles and silicon are heated by the irradiation and they will expand differently due to their different exp... Particles can be removed from a silicon surface by means of irradiation and a laser plasma shock wave.The particles and silicon are heated by the irradiation and they will expand differently due to their different expansion coefficients,making the particles easier to be removed.Laser plasma can ionize and even vaporize particles more significantly than an incident laser and,therefore,it can remove the particles more efficiently.The laser plasma shock wave plays a dominant role in removing particles,which is attributed to its strong burst force.The pressure of the laser plasma shock wave is determined by the laser pulse energy and the gap between the focus of laser and substrate surface.In order to obtain the working conditions for particle removal,the removal mechanism,as well as the temporal and spatial characteristics of velocity,propagation distance and pressure of shock wave have been researched.On the basis of our results,the conditions for nano-particle removal are achieved. 展开更多
关键词 laser-induced plasma shock wave nano-particles surface cleaning
下载PDF
Regulate the chemical property of the carbon nanospheres layer modified on the surface of sodium metal anode to achieve high-load battery
5
作者 Chuang Li Xueying Zheng +3 位作者 Minghao Sun Fei Tian Danni Lei Chengxin Wang 《Nano Research》 SCIE EI CSCD 2024年第11期9728-9736,共9页
The energy density of batteries can be increased by using high-load cathode material matched with sodium (Na) metal anode. However, the large polarization of the battery under such harsh conditions will promote the gr... The energy density of batteries can be increased by using high-load cathode material matched with sodium (Na) metal anode. However, the large polarization of the battery under such harsh conditions will promote the growth of Na dendrites and side reactions. Carbon materials are regarded as ideal modify layers on Na metal anode to regulate the Na+ plating/stripping behavior and inhibit the Na dendrites and side reactions due to their light weight, high stability and structural adjustability. However, commonly used carbon nanotubes and carbon nanofibers cannot enable these modified Na metal anodes to operate stably in full batteries with a high-load cathode (】15 mg·cm^(−2)). The most fundamental reason is that abundant polar functional groups on the surface bring serious side reactions and agglomerations lead to uneven Na+ flow. Here, a proof-of-concept study lies on fabrications of carbon nanospheres with small amount of polar functional groups and sodiophobic components on the surface of Na metal anode, which significantly enhances the uniformity of the Na+ plating/stripping. The assembled symmetric battery can cycle stability for 1300 h at 3 mA·cm^(−2)/3 mAh·cm^(−2). The full battery with high-load Na3V2(PO4)3 (30 mg·cm^(−2)) maintains a Coulombic efficiency of 99.7% after 100 cycles. 展开更多
关键词 artificial interfacial layers carbon materials plasma cleaning dendritic sodium sodium metal batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部