Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering(SPS). The structure and mechanical properties of the composites were investigated. Testi...Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering(SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide(Al_4C_3) is not formed during SPS processing. Further addition of graphene(above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration.展开更多
A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),...A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM),energy dispersive spectrum (EDS) analysis,microhardness test,and ball-on-disc wear experiment.XRD results indicate that some new phases FeAl,Fe0.23Ni0.77Al,and Ni3Al exit in the composite coating with the Al2O3 addition.SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures.The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating.The formation mechanism of the intermetallic compounds was also investigated.展开更多
A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiB...A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.展开更多
A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers...A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41.展开更多
Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal co...Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915℃ when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite.展开更多
The equilibrium compositions and thermodynamic properties(density,enthalpy,etc at constant pressure)of plasma of pure gases and mixtures under local thermodynamic nonequilibrium have been calculated in this paper.The ...The equilibrium compositions and thermodynamic properties(density,enthalpy,etc at constant pressure)of plasma of pure gases and mixtures under local thermodynamic nonequilibrium have been calculated in this paper.The homotopy Levenberg-Marquardt algorithm was proposed to accurately solve nonlinear equations with singular Jacobian matrices,and is constructed by the Saha equation and Guldberg-Waage equation combined with mass conservation,the electric neutrality principle and Dalton’s partial pressure law,to solve the problem of dependence on the initial value in the process of iteration calculation.In this research,the equations at a higher temperature were solved and used as the auxiliary equations,and the homotopy control parameters’sequence of the homotopy equations was selected by equal ratios.For auxiliary equations,the iterative initial value was obtained by assuming that there were only the highestvalence atomic cations and electrons at this temperature,and the plasma equilibrium composition distribution with the required accuracy was ultimately solved under the current conditions employing the Levenberg-Marquardt algorithm.The control parameter sequence was arranged according to the geometric sequence and the homotopy step was gradually shortened to ensure continuity of the homotopy process.Finally,the equilibrium composition and thermodynamic properties of pure N_(2),Mg(30%)-CO_(2)(70%)and Mg(40%)-CO(50%)-N_(2)(10%)mixture plasma at atmospheric pressure were calculated and the calculation process of some specified temperatures was shown and analyzed.The calculation accuracy of equilibrium composition is higher than other findings in the literature.The results for the thermodynamic properties are in good agreement with data reported by the literature.展开更多
Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an...Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al2 O3-packed dielectric barrier discharge(DBD) reactor at room temperature. Results show that the presence of O2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH3. The final yield of NH3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23 kV, respectively when air was used as the carrier gas instead of N2.From the viewpoint of energy savings, however, air carrier gas is better than N2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al2 O3 catalyst to give NH3 and CO2 as the main products. Compared to a small amount of N2 O formed with N2 as the carrier gas, however,more byproducts including N2O and NO2 in the gas phase and NH4 NO3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH3, the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma.展开更多
The mechanical and wear behavior of copper-tungsten disulfide(Cu/WS_2) composites fabricated by spark plasma sintering(SPS) and hot pressing(HP) was investigated, comparatively. Results indicated that the additi...The mechanical and wear behavior of copper-tungsten disulfide(Cu/WS_2) composites fabricated by spark plasma sintering(SPS) and hot pressing(HP) was investigated, comparatively. Results indicated that the addition of lubricant WS_2 substantially reduced wear rate of the Cu matrix composites fabricated by SPS,and the optimum content of WS_2 is 20 wt% with regard to the wear behavior. However, it affected a little to the wear rate while dramatically decreased the friction coefficient of the composite fabricated by HP.This difference in friction behavior of the self-lubricating composites fabricated by the two techniques was closely related to their different mechanical properties. Severe interfacial reaction occurred during spark plasma sintering, leading to brittle phase formation at interface.展开更多
In this study, SiC/AA6061 composites with different SiC volume fractions (5%, 10%, 15% and 20%) were fabricated by spark plasma sintering. The deformation behaviour of the composites was studied by uni- axial compre...In this study, SiC/AA6061 composites with different SiC volume fractions (5%, 10%, 15% and 20%) were fabricated by spark plasma sintering. The deformation behaviour of the composites was studied by uni- axial compression test at temperatures from 573 K to 773 K and strain rates between 0.001 s^-1 and 1 s^-1. Results indicate that the flow stress of SiCIAA6061 composites increases with the increase of SiC volume fraction, with the decrease of deformation temperature and with the decrease of strain rate. The main deformation mechanism of the composites is dynamic recrystallisation (DRX), and the DRX degree depends on the processing parameters of deformation. Higher SiC volume fraction, higher deformation temper- ature and lower deformation strain rate promote the occurrence of DRX. The strain rate sensitivity and deformation activation energy of SiC/AA6061 composites are calculated. Results show that with the in- crease in deformation temperature and the decrease in SiC volume fraction, the strain rate sensitivity of the composites increases. From 573 K to 773 K, the average deformation activation energy of 5vol.%SiC/ AA6061, 10voI.%SiC/AA6061, 15voI.%SiC/AA6061 and 20vol.%SiC/AA6061 are 20Z91, 230.88, 237.7 and 249.87 kJ mol^-1, respectively. The optimum hot working zone of the SiC/AA6061 composites is in the tem- perature range of 723 K to 773 K at strain rates from 0.1 s^-1 to 1 s^-1.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51271012)
文摘Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering(SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide(Al_4C_3) is not formed during SPS processing. Further addition of graphene(above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration.
文摘A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM),energy dispersive spectrum (EDS) analysis,microhardness test,and ball-on-disc wear experiment.XRD results indicate that some new phases FeAl,Fe0.23Ni0.77Al,and Ni3Al exit in the composite coating with the Al2O3 addition.SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures.The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating.The formation mechanism of the intermetallic compounds was also investigated.
基金Supported by the Fund of National Key Laboratory of High Power Microwave Technology under Grant No 2014-763.xy.kthe National Natural Science Foundation of China under Grant No 21573054the Joint Funds Key Project of the National Natural Science Foundation of China under Grant No U1537214
文摘A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.
基金Funded by the National Natural Science Foundation of China(51572208)the 111 Project(B13035)+1 种基金the National Natural Science Foundation of Hubei Province(2014CFB257 and 2014CFB258)the Fundamental Research Funds for the Central Universities(WUT:2015-III-059)
文摘A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41.
基金financially supported by the National Natural Science Foundation of China (No. 51374028)
文摘Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915℃ when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite.
基金supported by the National Key Research and Development Program of China(No.2017YFA0700300)the Fundamental Research Funds for the Central Universities(No.N2025032)the Liaoning Provincial Natural Science Foundation(No.2020-MS-362)。
文摘The equilibrium compositions and thermodynamic properties(density,enthalpy,etc at constant pressure)of plasma of pure gases and mixtures under local thermodynamic nonequilibrium have been calculated in this paper.The homotopy Levenberg-Marquardt algorithm was proposed to accurately solve nonlinear equations with singular Jacobian matrices,and is constructed by the Saha equation and Guldberg-Waage equation combined with mass conservation,the electric neutrality principle and Dalton’s partial pressure law,to solve the problem of dependence on the initial value in the process of iteration calculation.In this research,the equations at a higher temperature were solved and used as the auxiliary equations,and the homotopy control parameters’sequence of the homotopy equations was selected by equal ratios.For auxiliary equations,the iterative initial value was obtained by assuming that there were only the highestvalence atomic cations and electrons at this temperature,and the plasma equilibrium composition distribution with the required accuracy was ultimately solved under the current conditions employing the Levenberg-Marquardt algorithm.The control parameter sequence was arranged according to the geometric sequence and the homotopy step was gradually shortened to ensure continuity of the homotopy process.Finally,the equilibrium composition and thermodynamic properties of pure N_(2),Mg(30%)-CO_(2)(70%)and Mg(40%)-CO(50%)-N_(2)(10%)mixture plasma at atmospheric pressure were calculated and the calculation process of some specified temperatures was shown and analyzed.The calculation accuracy of equilibrium composition is higher than other findings in the literature.The results for the thermodynamic properties are in good agreement with data reported by the literature.
基金supported by the National Natural Science Foundation of China (Nos. 21547004, 51638001)the Beijing Natural Science Foundation (No. 8152011)the Scientific Research Program of Beijing Municipal Education Commission (No. KM201510005009)
文摘Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al2 O3-packed dielectric barrier discharge(DBD) reactor at room temperature. Results show that the presence of O2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH3. The final yield of NH3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23 kV, respectively when air was used as the carrier gas instead of N2.From the viewpoint of energy savings, however, air carrier gas is better than N2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al2 O3 catalyst to give NH3 and CO2 as the main products. Compared to a small amount of N2 O formed with N2 as the carrier gas, however,more byproducts including N2O and NO2 in the gas phase and NH4 NO3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH3, the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma.
基金supported by the National Natural Science Foundation of China (No. 51471177)the Youth Innovation PromotionAssociation CAS (No. 2016178)the Fundamental Research Funds for the Central Universities (No. N160205001)
文摘The mechanical and wear behavior of copper-tungsten disulfide(Cu/WS_2) composites fabricated by spark plasma sintering(SPS) and hot pressing(HP) was investigated, comparatively. Results indicated that the addition of lubricant WS_2 substantially reduced wear rate of the Cu matrix composites fabricated by SPS,and the optimum content of WS_2 is 20 wt% with regard to the wear behavior. However, it affected a little to the wear rate while dramatically decreased the friction coefficient of the composite fabricated by HP.This difference in friction behavior of the self-lubricating composites fabricated by the two techniques was closely related to their different mechanical properties. Severe interfacial reaction occurred during spark plasma sintering, leading to brittle phase formation at interface.
基金funded by the National Basic Research Program of China (No. 2013CB733000)the Guangxi Natural Science Foundation (No. 2015GXNSFBA139238)
文摘In this study, SiC/AA6061 composites with different SiC volume fractions (5%, 10%, 15% and 20%) were fabricated by spark plasma sintering. The deformation behaviour of the composites was studied by uni- axial compression test at temperatures from 573 K to 773 K and strain rates between 0.001 s^-1 and 1 s^-1. Results indicate that the flow stress of SiCIAA6061 composites increases with the increase of SiC volume fraction, with the decrease of deformation temperature and with the decrease of strain rate. The main deformation mechanism of the composites is dynamic recrystallisation (DRX), and the DRX degree depends on the processing parameters of deformation. Higher SiC volume fraction, higher deformation temper- ature and lower deformation strain rate promote the occurrence of DRX. The strain rate sensitivity and deformation activation energy of SiC/AA6061 composites are calculated. Results show that with the in- crease in deformation temperature and the decrease in SiC volume fraction, the strain rate sensitivity of the composites increases. From 573 K to 773 K, the average deformation activation energy of 5vol.%SiC/ AA6061, 10voI.%SiC/AA6061, 15voI.%SiC/AA6061 and 20vol.%SiC/AA6061 are 20Z91, 230.88, 237.7 and 249.87 kJ mol^-1, respectively. The optimum hot working zone of the SiC/AA6061 composites is in the tem- perature range of 723 K to 773 K at strain rates from 0.1 s^-1 to 1 s^-1.