Plasma electron density is one of the most fundamental parameters in the study of tokamak plasma physics.The method of plasma electron density measuring and processing on the Joint Texas Experimental Tokamak(J-TEXT) w...Plasma electron density is one of the most fundamental parameters in the study of tokamak plasma physics.The method of plasma electron density measuring and processing on the Joint Texas Experimental Tokamak(J-TEXT) was presented in this paper.The principle of the plasma electron density measuring by hydrogen cyanide(HCN) laser interferometer was introduced.Room temperature triglycine sulface(TGS) detector was used to obtain the beat signal of HCN,and phase difference was measured by high-speed acquisition card DAQ2010.Based on the signal characteristics,a specific HCN processing algorithm was designed to eliminate the baseline offset accurately and process overturns of HCN signals effectively.As a result,plasma electron density with high accuracy and low noise has been obtained during the J-TEXT tokamak experiment.展开更多
We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser e...We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha-Boltzmann equation (SBE). Each approach was also carried out by using the AI emission line and Mg emission lines. It was observed that the,SBE method generated a little higher electron number density value than the Stark broadening, method, but within the experimental uncertainty range. Comparisons of Ne determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for Are determination, especially when the system does not have any pure emission lines whose electron impact factor is known, Also use of Mg lines gives superior results than Al lines.展开更多
The properties of a helium atmospheric-pressure plasma jet(APPJ)are diagnosed with a dual assisted grounded electrode dielectric barrier discharge device.In the glow discharge,we captured the current waveforms at th...The properties of a helium atmospheric-pressure plasma jet(APPJ)are diagnosed with a dual assisted grounded electrode dielectric barrier discharge device.In the glow discharge,we captured the current waveforms at the positions of the three grounded rings.From the current waveforms,the time delay between the adjacent positions of the rings is employed to calculate the plasma bullet velocity of the helium APPJ.Moreover,the electron density is deduced from a model combining with the time delay and current intensity,which is about 10^(11)cm^(-3).In addition,The ion-neutral particles collision frequency in the radial direction is calculated from the current phase difference between two rings,which is on the order of 10~7 Hz.The results are helpful for understanding the basic properties of APPJs.展开更多
An improved indirect scheme for laser positron generation is proposed. The positron yields in high-ZZ metal targets irradiated by laser produced electrons from near-critical density plasmas and underdense plasma are i...An improved indirect scheme for laser positron generation is proposed. The positron yields in high-ZZ metal targets irradiated by laser produced electrons from near-critical density plasmas and underdense plasma are investigated numerically. It is found that the positron yield is mainly affected by the number of electrons of energies up to several hundreds of MeV. Using near-critical density targets for electron acceleration, the number of high energy electrons can be increased dramatically. Through start-to-end simulations, it is shown that up to 6.78×10106.78×1010 positrons can be generated with state-of-the-art Joule-class femtosecond laser systems.展开更多
Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclo...Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance(ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine-and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe,plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V)characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar-and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the noninvasive optical method of emission spectroscopy, particularly actinometry, was investigated,and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and etch rate is approximately ?5%, the etch rate shows a slightly concave shape in contrast to the plasma density.展开更多
An investigation is carried out for understanding the properties of ion–acoustic(IA) solitary waves in an inhomogeneous magnetized electron-ion plasma with field-aligned sheared flow under the impact of q-nonextens...An investigation is carried out for understanding the properties of ion–acoustic(IA) solitary waves in an inhomogeneous magnetized electron-ion plasma with field-aligned sheared flow under the impact of q-nonextensive trapped electrons. The Schamel equation and its stationary solution in the form of solitary waves are obtained for this inhomogeneous plasma. It is shown that the amplitude of IA solitary waves increases with higher trapping efficiency(β), while the width remains almost the same. Further, it is found that the amplitude of the solitary waves decreases with enhanced normalized drift speed, shear flow parameter and the population of the energetic particles. The size of the nonlinear solitary structures is calculated to be a few hundred meters and it is pointed out that the present results are useful to understand the solar wind plasma.展开更多
Spectroscopic emission of lead plasma, generated by the fundamental (1064 nm) and second harmonics (532 nm) of a Q-switched pulsed Nd: YAG laser, is studied. The spectral lines of neutral atoms and singly ionized...Spectroscopic emission of lead plasma, generated by the fundamental (1064 nm) and second harmonics (532 nm) of a Q-switched pulsed Nd: YAG laser, is studied. The spectral lines of neutral atoms and singly ionized lead ions were shown predominantly. The profiles of neutral lead lines observed were used to extract the excitation temperature using Boltzmann plots, whereas electron number density was determined from the profile of Stark broadened line. The variations of excitation temperature and electron number density as a function of laser energy were studied.展开更多
Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph ...Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions.Using time-resolved spectroscopic measurements of the plasma emissions,the temperature and electron number density of the steel plasma are determined for many times of the detector delay.The validity of the assumption by the spectroscopic methods that the laser-induced plasma(LIP) is optically thin and is also in local thermodynamic equilibrium(LTE) has been evaluated for many delay times.From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value,the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns,900 ns and 1000 ns.展开更多
In this work,we studied the effects of the discharge current,gas flow rate and vessel pressure on the electron temperature and density of Ar plasma by Langmuir probe measurement.The argon plasma was created by a one-c...In this work,we studied the effects of the discharge current,gas flow rate and vessel pressure on the electron temperature and density of Ar plasma by Langmuir probe measurement.The argon plasma was created by a one-cathode arc source.The experimental results show that with increasing discharge current and gas flow rate,the electron temperature and density increase.It is found that when the discharge current is 70 A,90 A and HO A at an argon flow rate of2000 seem,the electron densities at about 0.186 m distance from the nozzle are 13.00×10^18 m^-3,14.04×10^18 m^-3 and 15.62×10^18 m^-3,and the electron temperatures are 0.38 eV,0.58 eV and0.71 eV,respectively.The positive I-V characteristic is explained.展开更多
A high-flux linear plasma device in Sichuan University plasma-surface interaction(SCU-PSI)based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the ...A high-flux linear plasma device in Sichuan University plasma-surface interaction(SCU-PSI)based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors.In this paper,the helium plasma has been characterized by a double-pin Langmuir probe.The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T.The core density and ion flux of helium plasma have a strong dependence on the applied current,magnetic field strength and gas flow rate.It could reach an electron density of1.2×10^19m^-3and helium ion flux of 3.2×10^22m^-2s^-1,with a gas flow rate of 4 standard liter per minute,magnetic field strength of 0.2 T and input power of 11 k W.With the addition of-80 Vapplied to the target to increase the helium ion energy and the exposure time of 2 h,the flat top temperature reached about 530°C.The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy.These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.展开更多
Investigation of experimental configuration for the electron Bernstein wave (EBW) heating by using the existing electron cyclotron heating (ECH) antennas on LHD was performed. By using an antenna installed in the ...Investigation of experimental configuration for the electron Bernstein wave (EBW) heating by using the existing electron cyclotron heating (ECH) antennas on LHD was performed. By using an antenna installed in the lower port, direct oblique launching of the extraordinary (X-) mode from the high magnetic field side (HFS) is available. Since the parallel component of the refractive index (NIF) varies during propagation because of the inhomogeneity of the magnetic field, NH can be zero when the launched X-mode crosses the fundamental electron cyclotron resonance (ECR) layer even NⅡ is noonzero initially. In such a condition, if the electron density is above a certain level the obliquely launched X-mode can pass the fundamental ECR layer without being damped out and can be mode-converted to EBW that is absorbed at the Doppler shifted ECR layer. By using an antenna installed in the horizontal port, oblique launching from the lower magnetic field side (LFS) toward the over-dense plasma is available. Excitation of EBW via the mode conversion process of ordinary mode(O)-extraordinary mode(X)-electron Bernstein wave (B) is expected with the O-mode launching toward an appropriate direction. The O-X-B mode conversion rate and the region of power deposition were surveyed by varying the magnetic field strength and the launching direction. The results of the survey suggest that efficient heating in the core region is difficult by using the existing antenna. Rearrangement of the final mirror of the launching antenna may be needed.展开更多
Structure, improvements and experiment results of a vertical three-channel far- in- frared (FIR) hydrogen cyanide (HCN) laser interferometer, operated routinely in EAST to measure the electron density profile, are...Structure, improvements and experiment results of a vertical three-channel far- in- frared (FIR) hydrogen cyanide (HCN) laser interferometer, operated routinely in EAST to measure the electron density profile, are presented. Moreover, a five-channel deuterium cyanide (DCN) laser interferometer was developed successfully. Some key issues confronted in development, including the economization of working gas and the solution to atmospheric absorption, are resolved and described in detail.展开更多
基金Major State Basic Research Development Program of China (program 973,No. 2008CB717807)ITER Program Supporting Research in China (No. 2010GB108004)
文摘Plasma electron density is one of the most fundamental parameters in the study of tokamak plasma physics.The method of plasma electron density measuring and processing on the Joint Texas Experimental Tokamak(J-TEXT) was presented in this paper.The principle of the plasma electron density measuring by hydrogen cyanide(HCN) laser interferometer was introduced.Room temperature triglycine sulface(TGS) detector was used to obtain the beat signal of HCN,and phase difference was measured by high-speed acquisition card DAQ2010.Based on the signal characteristics,a specific HCN processing algorithm was designed to eliminate the baseline offset accurately and process overturns of HCN signals effectively.As a result,plasma electron density with high accuracy and low noise has been obtained during the J-TEXT tokamak experiment.
文摘We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha-Boltzmann equation (SBE). Each approach was also carried out by using the AI emission line and Mg emission lines. It was observed that the,SBE method generated a little higher electron number density value than the Stark broadening, method, but within the experimental uncertainty range. Comparisons of Ne determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for Are determination, especially when the system does not have any pure emission lines whose electron impact factor is known, Also use of Mg lines gives superior results than Al lines.
基金supported by National Natural Science Foundation of China(No.11105093)the Technological Project of Shenzhen,China(No.JC201005280485A)the Planned S&T Program of Shenzhen,China(No.JC201105170703A)
文摘The properties of a helium atmospheric-pressure plasma jet(APPJ)are diagnosed with a dual assisted grounded electrode dielectric barrier discharge device.In the glow discharge,we captured the current waveforms at the positions of the three grounded rings.From the current waveforms,the time delay between the adjacent positions of the rings is employed to calculate the plasma bullet velocity of the helium APPJ.Moreover,the electron density is deduced from a model combining with the time delay and current intensity,which is about 10^(11)cm^(-3).In addition,The ion-neutral particles collision frequency in the radial direction is calculated from the current phase difference between two rings,which is on the order of 10~7 Hz.The results are helpful for understanding the basic properties of APPJs.
基金Supported by the National Basic Research Program of China under Grant No 2013CBA01502the National Natural Science Foundation of China under Grant Nos 11575011 and 11535001+1 种基金the National Grand Instrument Project under Grant No2012YQ030142the UK EPSRC under Grant Nos EP/G054950/1,EP/G056803/1,EP/G055165/1 and EP/M022463/1
文摘An improved indirect scheme for laser positron generation is proposed. The positron yields in high-ZZ metal targets irradiated by laser produced electrons from near-critical density plasmas and underdense plasma are investigated numerically. It is found that the positron yield is mainly affected by the number of electrons of energies up to several hundreds of MeV. Using near-critical density targets for electron acceleration, the number of high energy electrons can be increased dramatically. Through start-to-end simulations, it is shown that up to 6.78×10106.78×1010 positrons can be generated with state-of-the-art Joule-class femtosecond laser systems.
基金the support of Deutsche Forschungsgemeinschaft,DFG#FR 1553/6-1
文摘Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance(ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine-and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe,plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V)characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar-and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the noninvasive optical method of emission spectroscopy, particularly actinometry, was investigated,and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and etch rate is approximately ?5%, the etch rate shows a slightly concave shape in contrast to the plasma density.
文摘An investigation is carried out for understanding the properties of ion–acoustic(IA) solitary waves in an inhomogeneous magnetized electron-ion plasma with field-aligned sheared flow under the impact of q-nonextensive trapped electrons. The Schamel equation and its stationary solution in the form of solitary waves are obtained for this inhomogeneous plasma. It is shown that the amplitude of IA solitary waves increases with higher trapping efficiency(β), while the width remains almost the same. Further, it is found that the amplitude of the solitary waves decreases with enhanced normalized drift speed, shear flow parameter and the population of the energetic particles. The size of the nonlinear solitary structures is calculated to be a few hundred meters and it is pointed out that the present results are useful to understand the solar wind plasma.
基金financially supported by the Higher Education Commission (HEC) and Pakistan Science Foundation (PSF-134)MCS, National University of Sciences & Technology (NUST) for encouragement in terms of provision of time and financial support to carry out research work
文摘Spectroscopic emission of lead plasma, generated by the fundamental (1064 nm) and second harmonics (532 nm) of a Q-switched pulsed Nd: YAG laser, is studied. The spectral lines of neutral atoms and singly ionized lead ions were shown predominantly. The profiles of neutral lead lines observed were used to extract the excitation temperature using Boltzmann plots, whereas electron number density was determined from the profile of Stark broadened line. The variations of excitation temperature and electron number density as a function of laser energy were studied.
文摘Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions.Using time-resolved spectroscopic measurements of the plasma emissions,the temperature and electron number density of the steel plasma are determined for many times of the detector delay.The validity of the assumption by the spectroscopic methods that the laser-induced plasma(LIP) is optically thin and is also in local thermodynamic equilibrium(LTE) has been evaluated for many delay times.From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value,the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns,900 ns and 1000 ns.
基金supported by the International Thermonuclear Experimental Reactor(ITER) Program Special of Ministry of Science and Technology(No.2013GB114003)National Natural Science Foundation of China(Nos.11102221,11275135,11475122)
文摘In this work,we studied the effects of the discharge current,gas flow rate and vessel pressure on the electron temperature and density of Ar plasma by Langmuir probe measurement.The argon plasma was created by a one-cathode arc source.The experimental results show that with increasing discharge current and gas flow rate,the electron temperature and density increase.It is found that when the discharge current is 70 A,90 A and HO A at an argon flow rate of2000 seem,the electron densities at about 0.186 m distance from the nozzle are 13.00×10^18 m^-3,14.04×10^18 m^-3 and 15.62×10^18 m^-3,and the electron temperatures are 0.38 eV,0.58 eV and0.71 eV,respectively.The positive I-V characteristic is explained.
基金supported by International Thermonuclear Experimental Reactor(ITER) program special(Grant No.2013GB114003)National Natural Science Foundation of China(project approval Nos.11275135,11475122)
文摘A high-flux linear plasma device in Sichuan University plasma-surface interaction(SCU-PSI)based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors.In this paper,the helium plasma has been characterized by a double-pin Langmuir probe.The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T.The core density and ion flux of helium plasma have a strong dependence on the applied current,magnetic field strength and gas flow rate.It could reach an electron density of1.2×10^19m^-3and helium ion flux of 3.2×10^22m^-2s^-1,with a gas flow rate of 4 standard liter per minute,magnetic field strength of 0.2 T and input power of 11 k W.With the addition of-80 Vapplied to the target to increase the helium ion energy and the exposure time of 2 h,the flat top temperature reached about 530°C.The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy.These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.
基金the budget codes NIFS07ULRR501-3,518,NIFS07KLRR303a grant-in-aid for scientific research of MEXT JAPAN,2008 19740347the JSPS-CAS Core-University program in the field of Plasma and Nuclear Fusion
文摘Investigation of experimental configuration for the electron Bernstein wave (EBW) heating by using the existing electron cyclotron heating (ECH) antennas on LHD was performed. By using an antenna installed in the lower port, direct oblique launching of the extraordinary (X-) mode from the high magnetic field side (HFS) is available. Since the parallel component of the refractive index (NIF) varies during propagation because of the inhomogeneity of the magnetic field, NH can be zero when the launched X-mode crosses the fundamental electron cyclotron resonance (ECR) layer even NⅡ is noonzero initially. In such a condition, if the electron density is above a certain level the obliquely launched X-mode can pass the fundamental ECR layer without being damped out and can be mode-converted to EBW that is absorbed at the Doppler shifted ECR layer. By using an antenna installed in the horizontal port, oblique launching from the lower magnetic field side (LFS) toward the over-dense plasma is available. Excitation of EBW via the mode conversion process of ordinary mode(O)-extraordinary mode(X)-electron Bernstein wave (B) is expected with the O-mode launching toward an appropriate direction. The O-X-B mode conversion rate and the region of power deposition were surveyed by varying the magnetic field strength and the launching direction. The results of the survey suggest that efficient heating in the core region is difficult by using the existing antenna. Rearrangement of the final mirror of the launching antenna may be needed.
文摘Structure, improvements and experiment results of a vertical three-channel far- in- frared (FIR) hydrogen cyanide (HCN) laser interferometer, operated routinely in EAST to measure the electron density profile, are presented. Moreover, a five-channel deuterium cyanide (DCN) laser interferometer was developed successfully. Some key issues confronted in development, including the economization of working gas and the solution to atmospheric absorption, are resolved and described in detail.