期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Plasma-Enhanced Atomic Layer Deposition of Amorphous Ga_(2)O_(3) for Solar-Blind Photodetection
1
作者 Ze-Yu Fan Min-Ji Yang +9 位作者 Bo-Yu Fan Andraz Mavric Nadiia Pastukhova Matjaz Valant Bo-Lin Li Kuang Feng Dong-Liang Liu Guang-Wei Deng Qiang Zhou Yan-Bo Li 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第4期331-344,共14页
Wide-bandgap gallium oxide(Ga_(2)O_(3))is one of the most promising semiconductor materials for solar-blind(200 nm to 280 nm)photodetection.In its amorphous form,amorphous gallium oxide(a-Ga_(2)O_(3))maintains its int... Wide-bandgap gallium oxide(Ga_(2)O_(3))is one of the most promising semiconductor materials for solar-blind(200 nm to 280 nm)photodetection.In its amorphous form,amorphous gallium oxide(a-Ga_(2)O_(3))maintains its intrinsic optoelectronic properties while can be prepared at a low growth temperature,thus it is compatible with Si integrated circuits(ICs)technology.Herein,the a-Ga_(2)O_(3) film is directly deposited on pre-fabricated Au interdigital electrodes by plasma enhanced atomic layer deposition(PE-ALD)at a growth temperature of 250°C.The stoichiometric a-Ga_(2)O_(3) thin film with a low defect density is achieved owing to the mild PE-ALD condition.As a result,the fabricated Au/a-Ga_(2)O_(3)/Au photodetector shows a fast time response,high responsivity,and excellent wavelength selectivity for solar-blind photodetection.Furthermore,an ultra-thin MgO layer is deposited by PE-ALD to passivate the Au/a-Ga_(2)O_(3)/Au interface,resulting in the responsivity of 788 A/W(under 254 nm at 10 V),a 250-nm-to-400-nm rejection ratio of 9.2×10^(3),and the rise time and the decay time of 32 ms and 6 ms,respectively.These results demonstrate that the a-Ga_(2)O_(3) film grown by PE-ALD is a promising candidate for high-performance solar-blind photodetection and potentially can be integrated with Si ICs for commercial production. 展开更多
关键词 Amorphous gallium oxide(a-Ga_(2)O_(3)) passivation layer plasma enhanced atomic layer deposition(PE-ALD) responsivity solar-blind photodetector
下载PDF
High performance AlGaN/GaN HEMTs with AlN/SiN_x passivation 被引量:1
2
作者 谭鑫 吕元杰 +7 位作者 顾国栋 王丽 敦少博 宋旭波 郭红雨 尹甲运 蔡树军 冯志红 《Journal of Semiconductors》 EI CAS CSCD 2015年第7期94-97,共4页
A1GaN/GaN high electron-mobility transistors (HEMTs) with 5 nm A1N passivation by plasma en- hanced atomic layer deposition (PEALD) were fabricated, covered by 50 nm SiNx which was grown by plasma enhanced chemica... A1GaN/GaN high electron-mobility transistors (HEMTs) with 5 nm A1N passivation by plasma en- hanced atomic layer deposition (PEALD) were fabricated, covered by 50 nm SiNx which was grown by plasma enhanced chemical vapor deposition (PECVD). With PEALD A1N passivation, current collapse was suppressed more effectively and the devices show better subthreshold characteristics. Moreover, the insertion of A1N increased the RF transconductance, which lead to a higher cut-off frequency. Temperature dependence of DC characteristics demonstrated that the degradations of drain current and maximum transconductance at elevated temperatures for the A1N/SiNx passivated devices were much smaller compared with the devices with SiNx passivation, indicating that PEALD A1N passivation can improve the high temperature operation of the A1GaN/GaN HEMTs. 展开更多
关键词 A1GaN/GaN HEMTs plasma enhanced atomic layer deposition (PEALD) AIN PASSIVATION sub-threshold hysteresis thermal stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部