In this paper,a novel polygeneration system involving plasma gasifier,pyrolysis reactor,gas turbine(GT),supercritical CO_(2)(S-CO_(2))cycle,and organic Rankine cycle(ORC)has been developed.In the proposed scheme,the s...In this paper,a novel polygeneration system involving plasma gasifier,pyrolysis reactor,gas turbine(GT),supercritical CO_(2)(S-CO_(2))cycle,and organic Rankine cycle(ORC)has been developed.In the proposed scheme,the syngas is obtained by the gasification and the pyrolysis is first burned and drives the gas turbine for power generation,and then the resulting hot exhaust gas is applied to heat the working fluid for the supercritical CO_(2)cycle and the working fluid for the bottom organic Rankine cycle.In addition to the electrical output,the pyrolysis subsystem also produces pyrolysis oil and char.Accordingly,energy recovery is achieved while treating waste in a non-hazardous manner.The performance of the new scheme was examined by numerous methods,containing energy analysis,exergy analysis,and economic analysis.It is found that the net total energy output of the polygeneration system could attain 19.89 MW with a net total energy efficiency of 52.77%,and the total exergy efficiency of 50.14%.Besides,the dynamic payback period for the restoration of the proposed project is only 3.31 years,and the relative net present value of 77552640 USD can be achieved during its 20-year lifetime.展开更多
基金supported by the National Natural Science Fund of China(No.52106008)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51821004)Science and Technology Planning Project of Guangdong Province(No.2020B1212060048).
文摘In this paper,a novel polygeneration system involving plasma gasifier,pyrolysis reactor,gas turbine(GT),supercritical CO_(2)(S-CO_(2))cycle,and organic Rankine cycle(ORC)has been developed.In the proposed scheme,the syngas is obtained by the gasification and the pyrolysis is first burned and drives the gas turbine for power generation,and then the resulting hot exhaust gas is applied to heat the working fluid for the supercritical CO_(2)cycle and the working fluid for the bottom organic Rankine cycle.In addition to the electrical output,the pyrolysis subsystem also produces pyrolysis oil and char.Accordingly,energy recovery is achieved while treating waste in a non-hazardous manner.The performance of the new scheme was examined by numerous methods,containing energy analysis,exergy analysis,and economic analysis.It is found that the net total energy output of the polygeneration system could attain 19.89 MW with a net total energy efficiency of 52.77%,and the total exergy efficiency of 50.14%.Besides,the dynamic payback period for the restoration of the proposed project is only 3.31 years,and the relative net present value of 77552640 USD can be achieved during its 20-year lifetime.