期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Performance Assessment of a Novel Polygeneration System Based on the Integration of Waste Plasma Gasification,Tire Pyrolysis,Gas Turbine,Supercritical CO_(2)Cycle and Organic Rankine Cycle 被引量:1
1
作者 FENG Fuyuan LI Tongyu +5 位作者 AN Jizhen CHEN Heng WANG Yi’nan XU Gang ZHAO Qinxin LIU Tong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2196-2214,共19页
In this paper,a novel polygeneration system involving plasma gasifier,pyrolysis reactor,gas turbine(GT),supercritical CO_(2)(S-CO_(2))cycle,and organic Rankine cycle(ORC)has been developed.In the proposed scheme,the s... In this paper,a novel polygeneration system involving plasma gasifier,pyrolysis reactor,gas turbine(GT),supercritical CO_(2)(S-CO_(2))cycle,and organic Rankine cycle(ORC)has been developed.In the proposed scheme,the syngas is obtained by the gasification and the pyrolysis is first burned and drives the gas turbine for power generation,and then the resulting hot exhaust gas is applied to heat the working fluid for the supercritical CO_(2)cycle and the working fluid for the bottom organic Rankine cycle.In addition to the electrical output,the pyrolysis subsystem also produces pyrolysis oil and char.Accordingly,energy recovery is achieved while treating waste in a non-hazardous manner.The performance of the new scheme was examined by numerous methods,containing energy analysis,exergy analysis,and economic analysis.It is found that the net total energy output of the polygeneration system could attain 19.89 MW with a net total energy efficiency of 52.77%,and the total exergy efficiency of 50.14%.Besides,the dynamic payback period for the restoration of the proposed project is only 3.31 years,and the relative net present value of 77552640 USD can be achieved during its 20-year lifetime. 展开更多
关键词 polygeneration system waste plasma gasification tire pyrolysis gas turbine cycle supercritical CO_(2)cycle organic Rankine cycle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部