Nanocomposite multilayer TiBN coatings were prepared on Si(100) and 9Cr18Mo substrates using TiBN composite cathode plasma immersion ion implantation and deposition technique(PIIID). Synthesis of TiBN composite cathod...Nanocomposite multilayer TiBN coatings were prepared on Si(100) and 9Cr18Mo substrates using TiBN composite cathode plasma immersion ion implantation and deposition technique(PIIID). Synthesis of TiBN composite cathodes was conducted by powder metallurgy technology and the content of hexagonal boron nitride(h-BN) was changed from 8% to 40%(mass fraction). The as-deposited coatings were characterized by energy dispersive spectrometer(EDS), grazing incidence X-ray diffraction(GIXRD), Fourier Transform Infrared Spectroscopy(FTIR) and high resolution transmission electron microcopy(HRTEM). EDS results show that the B content of the coatings was varied from 3.71% to 13.84%(molar fraction) when the composition of the h-BN in the composited cathodes was changed from 8 % to 40%(mass fraction). GIXRD results reveal that the TiBN coatings with a B content of 8% has the main diffraction peak of TiN(200),(220) and(311), and these peaks disappear when the B content is increased. FTIR analysis of the multilayer coatings showed the presence of h-BN in all coatings. TEM images reveal that all coatings have the characteristics of self-forming nanocomposite multilayers, where the nanocomposites are composed of face-centered cubic Ti N or h-BN nanocrystalline embedded in amorphous matrix. The tribological tests reveal that the Ti BN coatings exhibit a marked decrease of coefficient at room temperature(~0.25). The improved properties were found to be derived from the comprehensiveness of the self-forming multilayers structure and the h-BN solid lubrication effects in the coatings.展开更多
A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiB...A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.展开更多
Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on pr...Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on properties of the thin film were investigated. The chemical compositions of the as-deposited films were characterized by Raman spectroscopy. The micro-hardness, friction and wear behavior, corrosion resistance of the samples were evaluated, respectively. Compared with uncoated substrates, micro-hardness results reveal that the maximum is increased by 88.7%. In addition, the friction coefficient decreases to about 0.1, and the corrosion resistance of treated coupons surface are improved significantly.展开更多
A1 and N were introduced into copper substrate using plasma immersion ion implantation (PIII) in order to enhance its hardness and oxidation resistance. The dosage of N ion is 5 × 1016 cm-2, and range of dosage...A1 and N were introduced into copper substrate using plasma immersion ion implantation (PIII) in order to enhance its hardness and oxidation resistance. The dosage of N ion is 5 × 1016 cm-2, and range of dosage of A1 ion is 5× 1016-2× 1017 cm-2. The oxidation tests indicate that the copper samples after undergoing PIII possess higher oxidation resistance. The degree of oxidation resistance is found to vary with implantation dosage of AI ion. The antibacterial tests also reveal that the plasma implanted copper specimens have excellent antibacterial resistance against Staphylococcus aureus, which are similar to pure copper.展开更多
The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface...The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface, etc. Of the processing methods elavated temperature technique is usually used in PIII to produce a thick modified layer by means of the thermal diffusion. Meanwhile plasma ion heating is more recently developed by Ronghua Wei et al[1]. Therefore the temeperature is a critical parameter in plasma ion processing. In this paper we present the theoretical model and analysize the effect of imlantation voltage, plasma density, ion mass,etc on the temperature rise.展开更多
Plasma immersion ion implantation (PIII), unrestricted by sight-light process, is considered a proper method for inner surface strengthening. Two-dimensional simulation oj inner surface PIII process of cylindrical bo...Plasma immersion ion implantation (PIII), unrestricted by sight-light process, is considered a proper method for inner surface strengthening. Two-dimensional simulation oj inner surface PIII process of cylindrical bores were carried out in this paper using cold plasma fluid model, and influence of the bore's dimension on impact energy, retained dose and uniformity of inner surface were investigated.展开更多
Plasma-immersion ion implantation (PIII) is a technique for implanting ions into conducting, semiconducting and insulating objects. In PIII, the object being treated is immersed in a plasma and pulsed to a large negat...Plasma-immersion ion implantation (PIII) is a technique for implanting ions into conducting, semiconducting and insulating objects. In PIII, the object being treated is immersed in a plasma and pulsed to a large negative voltage (=-1 to-100 kV). The resulting sheath expands into the ambient plasma, extracting ions and accelerating them to the target. PIII has advantages over beam-line implantation in that large surfaces can be rapidly implanted, irregularly-shaped objects can be implanted without target manipulation, and surfaces that are not line-of-sight accessible can be treated. A two-dimensional, self-consistent model of plasma dynamics appropriate for PIII is described. The model is a hybrid, with Boltzmann electrons and kinetic ions, where the ion Vlasov equation is solved using the particle-in-cell (PIC) method. Solutions of the model give the time dependence of the ion flux, energy and impact angle at the target surface, together with the evolution of the sheath.展开更多
Emitted multi-crystalline silicon and black silicon solar cells are conformal doped by ion implantation using the plasma immersion ion implantation (PⅢ) technique. The non-uniformity of emitter doping is lower than...Emitted multi-crystalline silicon and black silicon solar cells are conformal doped by ion implantation using the plasma immersion ion implantation (PⅢ) technique. The non-uniformity of emitter doping is lower than 5 %. The secondary ion mass spectrometer profile indicates that the PⅢ technique obtained 100-rim shallow emitter and the emitter depth could be impelled by furnace annealing to 220 nm and 330 nm at 850 ℃ with one and two hours, respectively. Furnace annealing at 850 ℃ could effectively electrically activate the dopants in the silicon. The efficiency of the black silicon solar cell is 14.84% higher than that of the mc-silicon solar cell due to more incident light being absorbed.展开更多
AISI302 stainless steel samples were modified by elevated temperature nitrogen plasma immersion ion implantation at temperature ranging from 330 ℃ to 450 ℃. The tribological behaviors of the implanted layers of the ...AISI302 stainless steel samples were modified by elevated temperature nitrogen plasma immersion ion implantation at temperature ranging from 330 ℃ to 450 ℃. The tribological behaviors of the implanted layers of the samples were investigated. The samples were characterized by Auger electron spectroscopy (AES), glancing angle X-ray diffraction (GXRD), and nanoindentation. The results show that the implantation temperature plays an important rule on the microstructure and surface properties of the implanted layers. The thickness of the modified layer implanted at 390 ℃ is about 9 μm. It is improved about two orders compared with that of the implanted at room temperature. The surface nanohardness and the wear resistance of elevated temperature implanted layers increase significantly, and the friction coefficient decreases obviously in comparison with the unimplanted one. These data suggests that the improvement results from the formation of new phases such as ε-(Fe, Cr, Ni)2+xN, or noncrystal phase.展开更多
In order to increase the peak depth of nitrogen atoms during the nitrogen plasma immersion ion implantation of Ti-6Al-4V alloy, the rare earth metal yttrium was applied. In the experiment, yttrium and nitrogen ions we...In order to increase the peak depth of nitrogen atoms during the nitrogen plasma immersion ion implantation of Ti-6Al-4V alloy, the rare earth metal yttrium was applied. In the experiment, yttrium and nitrogen ions were implanted under the voltage of 20 and 30 kV, respectively. In the samples with yttrium pre-implantation for 30 min, the Anger electron spectroscopy (AES) analysis shows that the peak depth of the nitrogen atoms increases from 50 up to 100 nm. It can also be seen from the tribological tests that the wear resistance of these samples is increased remarkably.展开更多
An all solid-state pulsed power generator for plasma immersion ion implantation (PIII) is described. The pulsed power system is based on a Marx circuit configuration and semi- conductor switches, which have many adv...An all solid-state pulsed power generator for plasma immersion ion implantation (PIII) is described. The pulsed power system is based on a Marx circuit configuration and semi- conductor switches, which have many advantages in adjustable repetition frequency, pulse width modulation and long serving life compared with the conventional circuit category, tube-based technologies such as gridded vacuum tubes, thyratrons, pulse forming networks and transformers. The operation of PIII with pulse repetition frequencies up to 500 Hz has been achieved at a pulse voltage amplitude from 2 kV to 60 kV, with an adjustable pulse duration from 1 μs to 100 μs. The proposed system and its performance, as used to drive a plasma ion implantation chamber, are described in detail on the basis of the experimental results.展开更多
Indium tin oxide (ITO) transparent conducting film was treated with oxygen plasma immersion ion implantation (PIII). X-ray photoelectron spectroscopy (XPS) was employed to characterize the effect. The results su...Indium tin oxide (ITO) transparent conducting film was treated with oxygen plasma immersion ion implantation (PIII). X-ray photoelectron spectroscopy (XPS) was employed to characterize the effect. The results suggested that the oxygen content in the surface was increased and maintained for more than 50 h compared with traditional plasma-treated samples. Meanwhile, the work function of ITO estimated by comparing the peak shift in the XPS diagram suggested a corresponding increase by more than 1 eV.展开更多
Plasma immersion ion implantation (PI) overcomes the direct exposure limit of traditional beam- line ion implantation, and is suitable for the treatment of complex work-piece with large size. Pm technology is often ...Plasma immersion ion implantation (PI) overcomes the direct exposure limit of traditional beam- line ion implantation, and is suitable for the treatment of complex work-piece with large size. Pm technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PHI device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 x10-4 Pa. The density of RF plasma in homogeneous region is about 109 cm-3, and plasma density in the ion implantation region is about 101x cm-3. This device can be used for large-size sample material PHI treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.展开更多
Planar radio frequency inductively coupled plasmas(ICP) are employed for low-voltage ion implantation processes,with capacitive pulse biasing of the substrate for modulation of the ion energy. In this work, a two-di...Planar radio frequency inductively coupled plasmas(ICP) are employed for low-voltage ion implantation processes,with capacitive pulse biasing of the substrate for modulation of the ion energy. In this work, a two-dimensional(2D) selfconsistent fluid model has been employed to investigate the influence of the pulsed bias power on the nitrogen plasmas for various bias voltages and pulse frequencies. The results indicate that the plasma density as well as the inductive power density increase significantly when the bias voltage varies from 0 V to-4000 V, due to the heating of the capacitive field caused by the bias power. The N+fraction increases rapidly to a maximum at the beginning of the power-on time, and then it decreases and reaches the steady state at the end of the glow period. Moreover, it increases with the bias voltage during the power-on time, whereas the N2-+ fraction exhibits a reverse behavior. When the pulse frequency increases to 25 kHz and40 kHz, the plasma steady state cannot be obtained, and a rapid decrease of the ion density at the substrate surface at the beginning of the glow period is observed.展开更多
Plasma immersion ion implantation (PI^3), a new technique with certain advantages over biological samples, was developed. Argonion as well as nitrogen ion implantation of the pea seeds has been carried out with the PI...Plasma immersion ion implantation (PI^3), a new technique with certain advantages over biological samples, was developed. Argonion as well as nitrogen ion implantation of the pea seeds has been carried out with the PI^3 implanter and their RBS spectra were also studied. The results show that the mass deposition effect of ion implantation on biological samples can be achieved with the PI^3 implanter. In addition, there is an optimal implantation time for a given treatment condition. It presents new possibilities for the ion implantation into biological samples.展开更多
The output current waveform of the high voltage pulse modulator is an important information needed to control the plasma immersion ion implantation process, monitor the implantation parameters, for example, implantati...The output current waveform of the high voltage pulse modulator is an important information needed to control the plasma immersion ion implantation process, monitor the implantation parameters, for example, implantation dose and sheath condition, and to predict the target temperature as well as secondary electron emission. Our simulation results indicate that the total current peaks at the end of rise time of the applied voltage and this means that such data as dose, temperature and so on is perhaps overestimated from the current waveform because our experimental data acquired using a Rogowski coil and digital oscillator shows the highest current at the beginning of the voltage pulse. The discrepancy can be explained by a displacement current that may be attributed to the changing voltage, sheath capacitance, circuit loading effects, and so on. Our analysis of the current waveform in plasma immersion ion implantation process is accomplished through theoretical simulation and experiments.展开更多
A commercial plasma immersion ion implanter has been designed and constructed to enhance the surface properties of parts and components used in aerospace applications. The implanter consists of a vacuum chamber, pumpi...A commercial plasma immersion ion implanter has been designed and constructed to enhance the surface properties of parts and components used in aerospace applications. The implanter consists of a vacuum chamber, pumping and gas inlet system, custom sample chuck, four sets of hotfilaments, threefiltered vacuum arc plasma sources, special high voltage modulator, as well as monitoring and control systems. Special attention has been paid to improve the uniformity of plasma in the chamber. The power modulator operates in both the pulse bunching and single pulse modes. The maximum pulse voltage output is 80kV, maximum pulse current is 60A, and repetition frequency is 50~500Hz. The target chuck has been specially designed for uniform implantation into multiple aerospace components with irregular geometries as well as effective sample cooling. An in situ temperature monitoring device comprising dual thermocouples has been developed. The instrument was installed in an aerospace company and has been operating reliably for a year. In addition to reporting some of the hardware innovations, data on the improvement of the lifetime of an aircraft hydraulic pump disk using a dual nitrogen treatment process m-2; 30~45kV are presented. This treatment protocol has been adopted as a standard production procedure in the factory.展开更多
Biodegradable stents made of magnesium(Mg)and its alloys have been developed to minimize persistent inflammation or in-stent restenosis,which are the main problems for permanent stents.However,their rapid corrosion be...Biodegradable stents made of magnesium(Mg)and its alloys have been developed to minimize persistent inflammation or in-stent restenosis,which are the main problems for permanent stents.However,their rapid corrosion behavior under physiological conditions leads to poor vascular compatibility and premature structural failure,which remains an important unsolved clinical problem.Herein,we demonstrate a new strategy for solving this problem by combining poly(ether imide)(PEI)coating and subsequent tantalum(Ta)ion implantation.The PEI coating covers the whole surface of the Mg stent uniformly via a spray coating technique and provides Mg with superior corrosion resistance and stable sirolimus-carrying ability.Ta ion implantation is conducted by a sputtering-based plasma immersion ion implantation technique only onto the luminal surface of the PEI-coated Mg stent.Its extremely short processing time(<30 s)permits preservation of the PEI coating’s corrosion protection ability and sirolimus loading characteristics.In addition,a Ta-implanted skin layer that forms on the topmost surface of the PEI coating plays an effective role in not only preventing a rapid release of sirolimus from the surface but also improving the PEI coating’s surface hydrophilicity.Based on in vitro cellular response and blood compatibility tests,Ta ion implantation leads to the improvement of endothelial cell adhesion/proliferation and suppression of platelet adhesion/activation regardless of sirolimus loading.These results indicate that the combination of PEI coating and Ta ion implantation has significant innovative potential to provide excellent vascular compatibility and prevent in-stent restenosis and thrombosis.展开更多
基金Projects(21573054,21327002,51401201)supported by the National Natural Science Foundation of ChinaProject(U1537214)supported by the Joint Funds Key Project of the National Natural Science Foundation of ChinaProject(51535003)supported by the State Key Program of National Natural Science of China
文摘Nanocomposite multilayer TiBN coatings were prepared on Si(100) and 9Cr18Mo substrates using TiBN composite cathode plasma immersion ion implantation and deposition technique(PIIID). Synthesis of TiBN composite cathodes was conducted by powder metallurgy technology and the content of hexagonal boron nitride(h-BN) was changed from 8% to 40%(mass fraction). The as-deposited coatings were characterized by energy dispersive spectrometer(EDS), grazing incidence X-ray diffraction(GIXRD), Fourier Transform Infrared Spectroscopy(FTIR) and high resolution transmission electron microcopy(HRTEM). EDS results show that the B content of the coatings was varied from 3.71% to 13.84%(molar fraction) when the composition of the h-BN in the composited cathodes was changed from 8 % to 40%(mass fraction). GIXRD results reveal that the TiBN coatings with a B content of 8% has the main diffraction peak of TiN(200),(220) and(311), and these peaks disappear when the B content is increased. FTIR analysis of the multilayer coatings showed the presence of h-BN in all coatings. TEM images reveal that all coatings have the characteristics of self-forming nanocomposite multilayers, where the nanocomposites are composed of face-centered cubic Ti N or h-BN nanocrystalline embedded in amorphous matrix. The tribological tests reveal that the Ti BN coatings exhibit a marked decrease of coefficient at room temperature(~0.25). The improved properties were found to be derived from the comprehensiveness of the self-forming multilayers structure and the h-BN solid lubrication effects in the coatings.
基金Supported by the Fund of National Key Laboratory of High Power Microwave Technology under Grant No 2014-763.xy.kthe National Natural Science Foundation of China under Grant No 21573054the Joint Funds Key Project of the National Natural Science Foundation of China under Grant No U1537214
文摘A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.
文摘Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on properties of the thin film were investigated. The chemical compositions of the as-deposited films were characterized by Raman spectroscopy. The micro-hardness, friction and wear behavior, corrosion resistance of the samples were evaluated, respectively. Compared with uncoated substrates, micro-hardness results reveal that the maximum is increased by 88.7%. In addition, the friction coefficient decreases to about 0.1, and the corrosion resistance of treated coupons surface are improved significantly.
基金Project(9231083) supported by Yunnan Aerospace Industry Corporation Contract Research,ChinaProject(9220061) supported by City University of Hong Kong Donation Research Grant,China
文摘A1 and N were introduced into copper substrate using plasma immersion ion implantation (PIII) in order to enhance its hardness and oxidation resistance. The dosage of N ion is 5 × 1016 cm-2, and range of dosage of A1 ion is 5× 1016-2× 1017 cm-2. The oxidation tests indicate that the copper samples after undergoing PIII possess higher oxidation resistance. The degree of oxidation resistance is found to vary with implantation dosage of AI ion. The antibacterial tests also reveal that the plasma implanted copper specimens have excellent antibacterial resistance against Staphylococcus aureus, which are similar to pure copper.
文摘The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface, etc. Of the processing methods elavated temperature technique is usually used in PIII to produce a thick modified layer by means of the thermal diffusion. Meanwhile plasma ion heating is more recently developed by Ronghua Wei et al[1]. Therefore the temeperature is a critical parameter in plasma ion processing. In this paper we present the theoretical model and analysize the effect of imlantation voltage, plasma density, ion mass,etc on the temperature rise.
文摘Plasma immersion ion implantation (PIII), unrestricted by sight-light process, is considered a proper method for inner surface strengthening. Two-dimensional simulation oj inner surface PIII process of cylindrical bores were carried out in this paper using cold plasma fluid model, and influence of the bore's dimension on impact energy, retained dose and uniformity of inner surface were investigated.
文摘Plasma-immersion ion implantation (PIII) is a technique for implanting ions into conducting, semiconducting and insulating objects. In PIII, the object being treated is immersed in a plasma and pulsed to a large negative voltage (=-1 to-100 kV). The resulting sheath expands into the ambient plasma, extracting ions and accelerating them to the target. PIII has advantages over beam-line implantation in that large surfaces can be rapidly implanted, irregularly-shaped objects can be implanted without target manipulation, and surfaces that are not line-of-sight accessible can be treated. A two-dimensional, self-consistent model of plasma dynamics appropriate for PIII is described. The model is a hybrid, with Boltzmann electrons and kinetic ions, where the ion Vlasov equation is solved using the particle-in-cell (PIC) method. Solutions of the model give the time dependence of the ion flux, energy and impact angle at the target surface, together with the evolution of the sheath.
基金supported by the National Natural Science Foundation of China(Grant Nos.61106060 and 61274059)the National High Technology Research and Development Program of China(Grant No.2012AA052401)
文摘Emitted multi-crystalline silicon and black silicon solar cells are conformal doped by ion implantation using the plasma immersion ion implantation (PⅢ) technique. The non-uniformity of emitter doping is lower than 5 %. The secondary ion mass spectrometer profile indicates that the PⅢ technique obtained 100-rim shallow emitter and the emitter depth could be impelled by furnace annealing to 220 nm and 330 nm at 850 ℃ with one and two hours, respectively. Furnace annealing at 850 ℃ could effectively electrically activate the dopants in the silicon. The efficiency of the black silicon solar cell is 14.84% higher than that of the mc-silicon solar cell due to more incident light being absorbed.
文摘AISI302 stainless steel samples were modified by elevated temperature nitrogen plasma immersion ion implantation at temperature ranging from 330 ℃ to 450 ℃. The tribological behaviors of the implanted layers of the samples were investigated. The samples were characterized by Auger electron spectroscopy (AES), glancing angle X-ray diffraction (GXRD), and nanoindentation. The results show that the implantation temperature plays an important rule on the microstructure and surface properties of the implanted layers. The thickness of the modified layer implanted at 390 ℃ is about 9 μm. It is improved about two orders compared with that of the implanted at room temperature. The surface nanohardness and the wear resistance of elevated temperature implanted layers increase significantly, and the friction coefficient decreases obviously in comparison with the unimplanted one. These data suggests that the improvement results from the formation of new phases such as ε-(Fe, Cr, Ni)2+xN, or noncrystal phase.
文摘In order to increase the peak depth of nitrogen atoms during the nitrogen plasma immersion ion implantation of Ti-6Al-4V alloy, the rare earth metal yttrium was applied. In the experiment, yttrium and nitrogen ions were implanted under the voltage of 20 and 30 kV, respectively. In the samples with yttrium pre-implantation for 30 min, the Anger electron spectroscopy (AES) analysis shows that the peak depth of the nitrogen atoms increases from 50 up to 100 nm. It can also be seen from the tribological tests that the wear resistance of these samples is increased remarkably.
基金supported by National Natural Science Foundation of China (Nos. 50437020, 10675049)
文摘An all solid-state pulsed power generator for plasma immersion ion implantation (PIII) is described. The pulsed power system is based on a Marx circuit configuration and semi- conductor switches, which have many advantages in adjustable repetition frequency, pulse width modulation and long serving life compared with the conventional circuit category, tube-based technologies such as gridded vacuum tubes, thyratrons, pulse forming networks and transformers. The operation of PIII with pulse repetition frequencies up to 500 Hz has been achieved at a pulse voltage amplitude from 2 kV to 60 kV, with an adjustable pulse duration from 1 μs to 100 μs. The proposed system and its performance, as used to drive a plasma ion implantation chamber, are described in detail on the basis of the experimental results.
基金supported by National Natural Science Foundation of China(Nos.11005021,51177017 and 11175049)
文摘Indium tin oxide (ITO) transparent conducting film was treated with oxygen plasma immersion ion implantation (PIII). X-ray photoelectron spectroscopy (XPS) was employed to characterize the effect. The results suggested that the oxygen content in the surface was increased and maintained for more than 50 h compared with traditional plasma-treated samples. Meanwhile, the work function of ITO estimated by comparing the peak shift in the XPS diagram suggested a corresponding increase by more than 1 eV.
文摘Plasma immersion ion implantation (PI) overcomes the direct exposure limit of traditional beam- line ion implantation, and is suitable for the treatment of complex work-piece with large size. Pm technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PHI device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 x10-4 Pa. The density of RF plasma in homogeneous region is about 109 cm-3, and plasma density in the ion implantation region is about 101x cm-3. This device can be used for large-size sample material PHI treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175034,11335004,and 11405019)the Important National Science and Technology Specific Project of China(Grant No.2011 ZX 02403-001)
文摘Planar radio frequency inductively coupled plasmas(ICP) are employed for low-voltage ion implantation processes,with capacitive pulse biasing of the substrate for modulation of the ion energy. In this work, a two-dimensional(2D) selfconsistent fluid model has been employed to investigate the influence of the pulsed bias power on the nitrogen plasmas for various bias voltages and pulse frequencies. The results indicate that the plasma density as well as the inductive power density increase significantly when the bias voltage varies from 0 V to-4000 V, due to the heating of the capacitive field caused by the bias power. The N+fraction increases rapidly to a maximum at the beginning of the power-on time, and then it decreases and reaches the steady state at the end of the glow period. Moreover, it increases with the bias voltage during the power-on time, whereas the N2-+ fraction exhibits a reverse behavior. When the pulse frequency increases to 25 kHz and40 kHz, the plasma steady state cannot be obtained, and a rapid decrease of the ion density at the substrate surface at the beginning of the glow period is observed.
文摘Plasma immersion ion implantation (PI^3), a new technique with certain advantages over biological samples, was developed. Argonion as well as nitrogen ion implantation of the pea seeds has been carried out with the PI^3 implanter and their RBS spectra were also studied. The results show that the mass deposition effect of ion implantation on biological samples can be achieved with the PI^3 implanter. In addition, there is an optimal implantation time for a given treatment condition. It presents new possibilities for the ion implantation into biological samples.
文摘The output current waveform of the high voltage pulse modulator is an important information needed to control the plasma immersion ion implantation process, monitor the implantation parameters, for example, implantation dose and sheath condition, and to predict the target temperature as well as secondary electron emission. Our simulation results indicate that the total current peaks at the end of rise time of the applied voltage and this means that such data as dose, temperature and so on is perhaps overestimated from the current waveform because our experimental data acquired using a Rogowski coil and digital oscillator shows the highest current at the beginning of the voltage pulse. The discrepancy can be explained by a displacement current that may be attributed to the changing voltage, sheath capacitance, circuit loading effects, and so on. Our analysis of the current waveform in plasma immersion ion implantation process is accomplished through theoretical simulation and experiments.
文摘A commercial plasma immersion ion implanter has been designed and constructed to enhance the surface properties of parts and components used in aerospace applications. The implanter consists of a vacuum chamber, pumping and gas inlet system, custom sample chuck, four sets of hotfilaments, threefiltered vacuum arc plasma sources, special high voltage modulator, as well as monitoring and control systems. Special attention has been paid to improve the uniformity of plasma in the chamber. The power modulator operates in both the pulse bunching and single pulse modes. The maximum pulse voltage output is 80kV, maximum pulse current is 60A, and repetition frequency is 50~500Hz. The target chuck has been specially designed for uniform implantation into multiple aerospace components with irregular geometries as well as effective sample cooling. An in situ temperature monitoring device comprising dual thermocouples has been developed. The instrument was installed in an aerospace company and has been operating reliably for a year. In addition to reporting some of the hardware innovations, data on the improvement of the lifetime of an aircraft hydraulic pump disk using a dual nitrogen treatment process m-2; 30~45kV are presented. This treatment protocol has been adopted as a standard production procedure in the factory.
基金supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(Grant No:HI18C0493)
文摘Biodegradable stents made of magnesium(Mg)and its alloys have been developed to minimize persistent inflammation or in-stent restenosis,which are the main problems for permanent stents.However,their rapid corrosion behavior under physiological conditions leads to poor vascular compatibility and premature structural failure,which remains an important unsolved clinical problem.Herein,we demonstrate a new strategy for solving this problem by combining poly(ether imide)(PEI)coating and subsequent tantalum(Ta)ion implantation.The PEI coating covers the whole surface of the Mg stent uniformly via a spray coating technique and provides Mg with superior corrosion resistance and stable sirolimus-carrying ability.Ta ion implantation is conducted by a sputtering-based plasma immersion ion implantation technique only onto the luminal surface of the PEI-coated Mg stent.Its extremely short processing time(<30 s)permits preservation of the PEI coating’s corrosion protection ability and sirolimus loading characteristics.In addition,a Ta-implanted skin layer that forms on the topmost surface of the PEI coating plays an effective role in not only preventing a rapid release of sirolimus from the surface but also improving the PEI coating’s surface hydrophilicity.Based on in vitro cellular response and blood compatibility tests,Ta ion implantation leads to the improvement of endothelial cell adhesion/proliferation and suppression of platelet adhesion/activation regardless of sirolimus loading.These results indicate that the combination of PEI coating and Ta ion implantation has significant innovative potential to provide excellent vascular compatibility and prevent in-stent restenosis and thrombosis.