In this study,ceramic coatings were deposited on 6061 Al alloy using a plasma electrolytic oxidation(PEO)technique,and the effect of concentrations of KOH and Na_2SiO_3 as electrolytes for PEO process was studied on...In this study,ceramic coatings were deposited on 6061 Al alloy using a plasma electrolytic oxidation(PEO)technique,and the effect of concentrations of KOH and Na_2SiO_3 as electrolytes for PEO process was studied on microstructure,chemical composition,and electrochemical behavior of PEO coatings formed on the 6061 Al alloy.The results indicated that the increase in concentration of KOH led to rise in electrical conductivity of electrolyte.Consequently,the breakdown voltage reduced,which in turn improved the surface quality and the corrosion behavior.Moreover,the increase in concentration of Na_2SiO_3 resulted in the increase in incorporation of Si in the coating,which led to a higher corrosion potential in the concentration of 4 g L^(-1).According to this investigation,the best protection behavior of coatings can be obtained when the KOH and Na_2SiO_3 concentrations in PEO electrolyte are equal to 4 g L^(-1).展开更多
文摘In this study,ceramic coatings were deposited on 6061 Al alloy using a plasma electrolytic oxidation(PEO)technique,and the effect of concentrations of KOH and Na_2SiO_3 as electrolytes for PEO process was studied on microstructure,chemical composition,and electrochemical behavior of PEO coatings formed on the 6061 Al alloy.The results indicated that the increase in concentration of KOH led to rise in electrical conductivity of electrolyte.Consequently,the breakdown voltage reduced,which in turn improved the surface quality and the corrosion behavior.Moreover,the increase in concentration of Na_2SiO_3 resulted in the increase in incorporation of Si in the coating,which led to a higher corrosion potential in the concentration of 4 g L^(-1).According to this investigation,the best protection behavior of coatings can be obtained when the KOH and Na_2SiO_3 concentrations in PEO electrolyte are equal to 4 g L^(-1).