Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the s...Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the substrate is heated to 300 C, hard hydrogenated amorphous carbon film is deposited. From the IR deconvolution analysis of the C-H stretching absorption for the coating, the hydrocarbon group ration (CH3:CH2:CH) and C-C bond type ratio (sp3c/sp2c) are about 10%: 21%: 69% and 3:1~6:1,respectively. Their Knoop hardness is up to 10Gpa. No film isdeposited when the content of methane in the mixed gases is decreased to 5% at 300 C silicon substrate.展开更多
Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma par...Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma parameters and deposition rates was investigated, and the influ-ence of radio frequency substrate bias on properties of SiO2 films was also preliminarily studied.X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron mi-croscopy, atomic force microscopy and elllipsometry were used to characterize the deposited films,showing that SiO2 films with good structural and optical properties prepared at low temperaturehave been achieved. They can basically meet the requirements of integrated optical waveguides.展开更多
文摘Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the substrate is heated to 300 C, hard hydrogenated amorphous carbon film is deposited. From the IR deconvolution analysis of the C-H stretching absorption for the coating, the hydrocarbon group ration (CH3:CH2:CH) and C-C bond type ratio (sp3c/sp2c) are about 10%: 21%: 69% and 3:1~6:1,respectively. Their Knoop hardness is up to 10Gpa. No film isdeposited when the content of methane in the mixed gases is decreased to 5% at 300 C silicon substrate.
文摘Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma parameters and deposition rates was investigated, and the influ-ence of radio frequency substrate bias on properties of SiO2 films was also preliminarily studied.X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron mi-croscopy, atomic force microscopy and elllipsometry were used to characterize the deposited films,showing that SiO2 films with good structural and optical properties prepared at low temperaturehave been achieved. They can basically meet the requirements of integrated optical waveguides.