The evolutions of the electron temperatures of Muminum plasmas produced with 0.351 μm laser are simulated by means of one-dimensional hydrodynamic code. The simulations show that the plasma geometry has strong influe...The evolutions of the electron temperatures of Muminum plasmas produced with 0.351 μm laser are simulated by means of one-dimensional hydrodynamic code. The simulations show that the plasma geometry has strong influence on the electron temperature's evolution while the effect of the flux limiter is not so significant. The simulations are in good agreement with the experiments only at some spatial points. A full comparison between the simulations and experiments indicates that the one-dimensional code is not accurate enough to characterize the laser-produced plasmas. A post-processor code based on the hydro code is developed to generate the streak image of the Thomson scattering spectra, which can be directly compared with the experimental data.展开更多
基金supported by Natural Science Foundation of China (Nos. 10375064, 10275056, 10176028)the National High Technology Programs on Inertially Confined Fusion of China
文摘The evolutions of the electron temperatures of Muminum plasmas produced with 0.351 μm laser are simulated by means of one-dimensional hydrodynamic code. The simulations show that the plasma geometry has strong influence on the electron temperature's evolution while the effect of the flux limiter is not so significant. The simulations are in good agreement with the experiments only at some spatial points. A full comparison between the simulations and experiments indicates that the one-dimensional code is not accurate enough to characterize the laser-produced plasmas. A post-processor code based on the hydro code is developed to generate the streak image of the Thomson scattering spectra, which can be directly compared with the experimental data.