It is the fifth part of the study published under the common umbrella of “The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma”. In Parts 1 - 4, we formulated a novel approach to thermodynamics of on...It is the fifth part of the study published under the common umbrella of “The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma”. In Parts 1 - 4, we formulated a novel approach to thermodynamics of one- and two-component heterogeneous systems completely or partially filled with a liquid substance in the plasma state. The approach is based on the use of Gibbs variational principles, and it enables efforts to address a variety of problems relating to the equilibrium and stability of such systems. In this fifth part, the results of Parts 1 - 4 are applied to the analysis of equilibrium configurations of a two-component charged plasma trapped between two parallel plates (the geometry often used in various applications).展开更多
The strange characteristics of ball lightning are considered as a question hard to explain. In order to solve the problem, in this paper a complete model of plasma vortex is presented for the ball lightning. By ideal ...The strange characteristics of ball lightning are considered as a question hard to explain. In order to solve the problem, in this paper a complete model of plasma vortex is presented for the ball lightning. By ideal MHD equations, through imposing disturbance to plasma column, the possibility of sausage and kink instability of the lightning channel is analyzed from the perspective the minimum potential energy. The conclusion is that the kink instability (m = 1) is most prone to occur. And when instability occurs, because of the difference of the magnetic field in the twisted area, the magnetic pressure makes the trend further and therefore forming the plasma vortex that may eventually turn into ball lightning if the energy of the vortex is large enough. The existence of the vortex makes ball lightning have a short period of time stability. By the proposed model, the ball lightning features that are hard to understand in the past are explained. In this paper, the reason for bead lightning is also explained from the perspective of the sausage instability.展开更多
The three-dimensional(3D) magnetic configuration system in the J-TEXT tokamak has featured in many experimental studies.The system mainly consists of three subsystems:the static resonant magnetic perturbation(SRMP) sy...The three-dimensional(3D) magnetic configuration system in the J-TEXT tokamak has featured in many experimental studies.The system mainly consists of three subsystems:the static resonant magnetic perturbation(SRMP) system,the dynamic resonant magnetic perturbation(DRMP) system and the helical coil system.The SRMP coil system consist of two kinds of coils,i.e.three six-loop coils and two five-loop coils.It can suppress tearing modes with a moderate strength,and may also cause mode locking with larger amplitude.The DRMP coil system consists of 12 single-turn saddle coils(DRMP1) and 12 double-turn saddle coils(DRMP2).Its magnetic field can be rotated at a few kHz,leading to either acceleration or deceleration of the tearing mode velocity and the plasma rotation.The helical coil system consists of two closed coils,and is currently under construction to provide external rotational transform in J-TEXT.The 3D magnetic configuration system can suppress tearing modes,preventing and avoiding the occurrence of major disruption.展开更多
文摘It is the fifth part of the study published under the common umbrella of “The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma”. In Parts 1 - 4, we formulated a novel approach to thermodynamics of one- and two-component heterogeneous systems completely or partially filled with a liquid substance in the plasma state. The approach is based on the use of Gibbs variational principles, and it enables efforts to address a variety of problems relating to the equilibrium and stability of such systems. In this fifth part, the results of Parts 1 - 4 are applied to the analysis of equilibrium configurations of a two-component charged plasma trapped between two parallel plates (the geometry often used in various applications).
文摘The strange characteristics of ball lightning are considered as a question hard to explain. In order to solve the problem, in this paper a complete model of plasma vortex is presented for the ball lightning. By ideal MHD equations, through imposing disturbance to plasma column, the possibility of sausage and kink instability of the lightning channel is analyzed from the perspective the minimum potential energy. The conclusion is that the kink instability (m = 1) is most prone to occur. And when instability occurs, because of the difference of the magnetic field in the twisted area, the magnetic pressure makes the trend further and therefore forming the plasma vortex that may eventually turn into ball lightning if the energy of the vortex is large enough. The existence of the vortex makes ball lightning have a short period of time stability. By the proposed model, the ball lightning features that are hard to understand in the past are explained. In this paper, the reason for bead lightning is also explained from the perspective of the sausage instability.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2018YFE0310300)National Natural Science Foundation of China(Nos.12075096,11905077,11905078,11905079,11905080,12047526 and 51821005)
文摘The three-dimensional(3D) magnetic configuration system in the J-TEXT tokamak has featured in many experimental studies.The system mainly consists of three subsystems:the static resonant magnetic perturbation(SRMP) system,the dynamic resonant magnetic perturbation(DRMP) system and the helical coil system.The SRMP coil system consist of two kinds of coils,i.e.three six-loop coils and two five-loop coils.It can suppress tearing modes with a moderate strength,and may also cause mode locking with larger amplitude.The DRMP coil system consists of 12 single-turn saddle coils(DRMP1) and 12 double-turn saddle coils(DRMP2).Its magnetic field can be rotated at a few kHz,leading to either acceleration or deceleration of the tearing mode velocity and the plasma rotation.The helical coil system consists of two closed coils,and is currently under construction to provide external rotational transform in J-TEXT.The 3D magnetic configuration system can suppress tearing modes,preventing and avoiding the occurrence of major disruption.