Comparisons of particle’s thermal behavior between Fe base alloy and boron carbide in plasma transferred arc (PTA) space was made based on theoretical evaluation results in this article. It was found that most of t...Comparisons of particle’s thermal behavior between Fe base alloy and boron carbide in plasma transferred arc (PTA) space was made based on theoretical evaluation results in this article. It was found that most of the Fe base particles would be fully melted while they transporting through the central plasma field with 200 A surfacing currents. And the particles with a diameter less than 0.5×10 -4 m might be fully evaporated. However, for the boron carbide (B 4C) particles, only the one with a diameter less than 0.5×10 -4 m could be melted in the same PTA space. Most of B 4C particles are only preheated at its solid state when they were fed through the central field of PTA plasma when the surfacing current is equal to or less than 200 A . When the arc current was smaller than100 A , only the particles smaller than 0.5×10 -4 m could be melted in the PTA space for the Fe base alloy. Almost none of the discussed B 4C particles could be melted in the 100 A PTA space.展开更多
Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of th...Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobait-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3 leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.展开更多
Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures co...Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures containing 0 wt%, 30 wt%, and 60 wt% of WC were investigated. The microstructure and phase composition of the Fe/WC composite PTA coatings were evaluated systemically by using scanning electron microscope(SEM) and X-ray diffraction(XRD). The wear properties of the three fabricated PTA coatings were investigated on a BRUKER UMT TriboLab. The morphologies of the worn tracks and wear debris were characterized by using SEM and 3 D non-contract profiler. The experimental results reveal that the microhardness on the cross-section and the wear resistance of the fabricated coatings increase dramatically with the increasing adding WC contents. The coating containing 60 wt% of WC possesses excellent wear resistance validated by the lower coefficients of friction(COF), narrower and shallower wear tracks and smaller wear rate. In the pure Fe-based coating, the main wear mechanism is the combination of adhesion and oxidative wear. Adhesive and two-body abrasive wear are predominated in the coating containing 30 wt% of WC, whereas threebody abrasion wear mechanism is predominated in the coating containing 60 wt% of WC.展开更多
Fe-based coatings reinforced by spherical tungsten carbide were deposited on 304 stainless steel using plasma transferred arc(PTA) technology.The composition and phase microstructure of the coatings were evaluated usi...Fe-based coatings reinforced by spherical tungsten carbide were deposited on 304 stainless steel using plasma transferred arc(PTA) technology.The composition and phase microstructure of the coatings were evaluated using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS) and X-ray diffraction(XRD).The corrosion behaviors of the coatings in 0.5 mol/L HCl solution were studied using polarization curve and electrochemical impedance spectroscopy(EIS) measurements.The experimental results shows that the tungsten carbide improves the corrosion resistance of the Fe-based alloy coating,but increase in the mass fraction of tungsten carbide leads to increasing amount of defects of holes and cracks,which results in an adverse effect on the corrosion resistance.The defects are mainly present on the tungsten carbide but also extend to the Fe-based matrix.The tungsten carbide,acting as a cathode,and binding material of Fe-based alloy,acting as an anode,create a galvanic corrosion cell.The binding material is preferentially corroded and causes the degradation of the coating.展开更多
The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD)...The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), transmissionelectron microscope (TEM), and dry sand abrasion tester (DSAT). The aging effect on the structureand wear resistance of the cobalt-based PTA coating was also studied. The results show that theas-welded coating consists of cobalt-based solid solution with face-centered cubic structure andhexagonal (Cr,Fe)_7C_3. There are a lot of stacking faults existing in the cobalt-based solidsolution. After aging at 600 deg C for 60 h, the microstructure becomes coarse, and another carbide(Cr,Fe)_(23)C_6 precipitates. As a result, the wear mass loss of the aged sample is higher than thatof the as-welded sample.展开更多
In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen ...In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen surface components with alloys that would not be possible to process otherwise. This work used Plasma transferred arc (PTA) hardfacing for surface alloying. Different amounts of aluminium powder, 5-25%, were added to a Ni based superalloy, from Hastealloy C family, in the atomized form. The mixture was homogeneized in a ball mill and PTA deposited on carbon steel substrate. The influence of different processing parameters on the final surface alloy was evaluated as current intensity and depositing velocity were varied. Coatings were characterized by optical and scanning electronic microscopy, X-ray diffraction and Vickers microhardness profiles, under a 500g load. Results showed that PTA hardfacing is an adequate surface alloying. For the conditions tested increasing hardness was obtained by solid solution for the lower amounts of Al added and due to the new intermetallic phases for the richer Al mixture.展开更多
The powders transportation in the plasma transferred-arc space during the coaxial powder-feeding surface depositing process was theoretical evaluated. The axial acceleration and velocity of various particles in the ar...The powders transportation in the plasma transferred-arc space during the coaxial powder-feeding surface depositing process was theoretical evaluated. The axial acceleration and velocity of various particles in the arc column were described. According to the results from theoretical calculations, it was found that: (1) The powder’s transporting velocity is much lower than the plasma fluid’s; (2) The powders axial transporting velocity presents “valley-shape distribution” along plasma arc column traverse section when surfacing current is greater than 100 A . When the arc current exceeding 100 A , the powders coming through the center field of arc column will transport slower than the powder through the outer-around field of arc column. It is in the field where the temperature is in the range of 9 000 K ~11 000 K that the particles can achieve its maximum axial acceleration in the argon plasma space. (3) For the given powder mass density, the smaller its size is, the greater its acceleration and the greater its averaged transporting velocity will be in the arc space; (4) For the given powder size, the greater its mass density is, the smaller its acceleration and averaged velocity will be in the arc space.展开更多
The application of response surface methodology was highlighted to predict and optimize the percentage of dilution of iron-based hardfaced surface produced by the PTA (plasma tratisferred arc welding) process. The e...The application of response surface methodology was highlighted to predict and optimize the percentage of dilution of iron-based hardfaced surface produced by the PTA (plasma tratisferred arc welding) process. The experiments were conducted based on five-factor five-level central composite rotatable design with full replication technique and a mathematical model was developed using response surface methodology. Furthermore, the response surface methodology was also used to optimize the process parameters that yielded the lowest percentage of dilution.展开更多
Arc-added glow discharge plasma penetrating technique is a new surface coating method. With the help of vacuum arc discharge, a cold cathode arc source continually emits ion beams of coating elements with high currenc...Arc-added glow discharge plasma penetrating technique is a new surface coating method. With the help of vacuum arc discharge, a cold cathode arc source continually emits ion beams of coating elements with high currency density and high ionizing ratio. As the ion bombard and diffusion working on, the surface of the parts form deposited layer, penetrated layer and hybrid layer. Under lab condition, a commercial magnesium alloy Az91 had been coated with Ti film layer with the aim of improving its’ anti-corrosion performance. This paper mainly summarized our studies on the testing and analyzing of the coating layer. The composition and microstructure of the coating layer had been analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the surface appearance had been surveyed by scanning electronic microscope (SEM). The adhesion strength between film and matrix had been evaluated by experiments of sticking-tearing. The results indicated that the coated layer on magnesium alloy were homogeneous, dense and robustly adhered.展开更多
Alloy powders including Ni60, WC, CrC, and TiC with different mass ratios were deposited on medium carbon low alloy steel by plasma welding. Through the experiments, the optimal alloy powder reinforcing cutter tool su...Alloy powders including Ni60, WC, CrC, and TiC with different mass ratios were deposited on medium carbon low alloy steel by plasma welding. Through the experiments, the optimal alloy powder reinforcing cutter tool surface properties were discovered. The wear resistance properties were investigated on the impact abrasive wear tester. The experimental results show that in terms of microstructure, there exists the shape of herringbone, spider mesh, broken flower structures in coatings. In addition, fusion area of four specimens surfacing welding layer displays a large number of acicular martensite with a small amount of austenite. The coating mainly consists of Ni-Cr-Fe austenitic phase and the other precipitates. TiC density is smaller, its content is less in alloy powder, in the process of surfacing welding, TiC is melted fully, which is mainly distributed in surface layer and middle layer of hard facing layer. The content of TiC gradually reduces from surface layer of hard facing layer to the fusion area. Compared to TiC, the density of tungsten carbide and chromium carbide is larger, there exist tungsten carbide and chromium carbide particles, which are not completely melted near the fusion area. The micro-hardness presents gradient change from the fusion area to the surface layer of hard facing layer, and the hardness of the middle layer is slightly lower than that of the fusion area, and the hardness increases near the surface layer.展开更多
A wear resistant (Cr, Fe)7C3/γ-Fe ceramalcomposite coating wasfabricatedon substrate of a 0.45% C carbon steel by plasma transferred arc (PTA) cladding process using the Fe-Cr-C elemental powder blends. The micro...A wear resistant (Cr, Fe)7C3/γ-Fe ceramalcomposite coating wasfabricatedon substrate of a 0.45% C carbon steel by plasma transferred arc (PTA) cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness and dry sliding wear resistance of the coating were evaluated. Results indicate that the plasma transferred arc clad ceramal composite coating has a rapidly solidified microstructure consisting of blocky primary (Cr, Fe)7C3 and the interblocky ( Cr, Fe)7C3/γ-Fe eutectics and is metallurgically bonded to the 0.45%C carbon steel substrate. The ceramal composite coating has high hardness and excellent wear resistance under dry sliding wear test condition.展开更多
This paper presents an investigation on depo- sition of Inconel-625 using laser rapid manufacturing (LRM) and plasma transferred arc (PTA) deposition in individual and tandem mode. LRM has advantages in terms of d...This paper presents an investigation on depo- sition of Inconel-625 using laser rapid manufacturing (LRM) and plasma transferred arc (PTA) deposition in individual and tandem mode. LRM has advantages in terms of dimensional accuracy, improved mechanical properties, finer process control, reduced heat input and lower thermal distortion, while PTA scores more in terms of lower initial investment, lower running cost and higher deposition rate. To quantify the clubbed advantages and limitations of both processes, these were studied individually and in tandem. A number of samples were deposited at different process parameters like power, scan speed, powder feed rate. They were subjected to tensile test, adhesion-cohesion test, impact test and micro hardness measurement. The results of individual tests showed the comparable mechanical prop- erties with i20% variation. The mixed dendritic-cellular and dendritic-columnar microstructures were respectively observed for LRM and PTA deposits with a distinct inter- face for the case of tandem deposition. The interface strength of tandem deposits was evaluated employing adhesion-cohesion test, and it was found to be (325 i 35) MPa. The study confirmed the viability of LRM and PTA deposition in tandem for hybrid manufacturing.展开更多
The plasma transferred arc (PTA) forming remanufacturing technology was introduced in this paper. This technology includes plasma surfacing, deposition and rapid forming technology. With self-developed plasma formin...The plasma transferred arc (PTA) forming remanufacturing technology was introduced in this paper. This technology includes plasma surfacing, deposition and rapid forming technology. With self-developed plasma forming system, the thrust of engine cylinder body was remanufactured by PTA powder surfacing. In the concrete, the Nil5 alloy was deposited on the thrust face of the body in order to recover its dimension. In addition, the reman- ufacturing forming with Fe-based, Inconel 625 alloy was studied. The microstructure and hardness of the as-depos- ited materials were investigated.展开更多
Wear tests are essential in the design of parts intended to work in environments that subject a part to high wear.Wear tests involve high cost and lengthy experiments,and require special test equipment.The use of mach...Wear tests are essential in the design of parts intended to work in environments that subject a part to high wear.Wear tests involve high cost and lengthy experiments,and require special test equipment.The use of machine learning algorithms for wear loss quantity predictions is a potentially effective means to eliminate the disadvantages of experimental methods such as cost,labor,and time.In this study,wear loss data of AISI 1020 steel coated by using a plasma transfer arc welding(PTAW)method with FeCrC,FeW,and FeB powders mixed in different ratios were obtained experimentally by some of the researchers in our group.The mechanical properties of the coating layers were detected by microhardness measurements and dry sliding wear tests.The wear tests were performed at three different loads(19.62,39.24,and 58.86 N)over a sliding distance of 900 m.In this study,models have been developed by using four different machine learning algorithms(an artificial neural network(ANN),extreme learning machine(ELM),kernel-based extreme learning machine(KELM),and weighted extreme learning machine(WELM))on the data set obtained from the wear test experiments.The R2 value was calculated as 0.9729 in the model designed with WELM,which obtained the best performance among the models evaluated.展开更多
文摘Comparisons of particle’s thermal behavior between Fe base alloy and boron carbide in plasma transferred arc (PTA) space was made based on theoretical evaluation results in this article. It was found that most of the Fe base particles would be fully melted while they transporting through the central plasma field with 200 A surfacing currents. And the particles with a diameter less than 0.5×10 -4 m might be fully evaporated. However, for the boron carbide (B 4C) particles, only the one with a diameter less than 0.5×10 -4 m could be melted in the same PTA space. Most of B 4C particles are only preheated at its solid state when they were fed through the central field of PTA plasma when the surfacing current is equal to or less than 200 A . When the arc current was smaller than100 A , only the particles smaller than 0.5×10 -4 m could be melted in the PTA space for the Fe base alloy. Almost none of the discussed B 4C particles could be melted in the 100 A PTA space.
基金This work is financially supported by the Scientific Research Foundation for Young Teachers of Anhui Province, China (No. 2006jql082).
文摘Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobait-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3 leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.
基金Funded by the Ocean Public Science and Technology Research Fund Projects of China(No.201405013-3)the National Natural Science Foundation of China(No.51609133)+1 种基金the China Postdoctoral Science Foundation(No.2017M620153)the Science&Technology Program of Shanghai Maritime University(No.20130448)
文摘Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures containing 0 wt%, 30 wt%, and 60 wt% of WC were investigated. The microstructure and phase composition of the Fe/WC composite PTA coatings were evaluated systemically by using scanning electron microscope(SEM) and X-ray diffraction(XRD). The wear properties of the three fabricated PTA coatings were investigated on a BRUKER UMT TriboLab. The morphologies of the worn tracks and wear debris were characterized by using SEM and 3 D non-contract profiler. The experimental results reveal that the microhardness on the cross-section and the wear resistance of the fabricated coatings increase dramatically with the increasing adding WC contents. The coating containing 60 wt% of WC possesses excellent wear resistance validated by the lower coefficients of friction(COF), narrower and shallower wear tracks and smaller wear rate. In the pure Fe-based coating, the main wear mechanism is the combination of adhesion and oxidative wear. Adhesive and two-body abrasive wear are predominated in the coating containing 30 wt% of WC, whereas threebody abrasion wear mechanism is predominated in the coating containing 60 wt% of WC.
基金the China Postdoctoral Science Foundation(No.2017M620153)the Science&Technology Program of Shanghai Jian Qiao University(No.SJQ19012)。
文摘Fe-based coatings reinforced by spherical tungsten carbide were deposited on 304 stainless steel using plasma transferred arc(PTA) technology.The composition and phase microstructure of the coatings were evaluated using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS) and X-ray diffraction(XRD).The corrosion behaviors of the coatings in 0.5 mol/L HCl solution were studied using polarization curve and electrochemical impedance spectroscopy(EIS) measurements.The experimental results shows that the tungsten carbide improves the corrosion resistance of the Fe-based alloy coating,but increase in the mass fraction of tungsten carbide leads to increasing amount of defects of holes and cracks,which results in an adverse effect on the corrosion resistance.The defects are mainly present on the tungsten carbide but also extend to the Fe-based matrix.The tungsten carbide,acting as a cathode,and binding material of Fe-based alloy,acting as an anode,create a galvanic corrosion cell.The binding material is preferentially corroded and causes the degradation of the coating.
文摘The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), transmissionelectron microscope (TEM), and dry sand abrasion tester (DSAT). The aging effect on the structureand wear resistance of the cobalt-based PTA coating was also studied. The results show that theas-welded coating consists of cobalt-based solid solution with face-centered cubic structure andhexagonal (Cr,Fe)_7C_3. There are a lot of stacking faults existing in the cobalt-based solidsolution. After aging at 600 deg C for 60 h, the microstructure becomes coarse, and another carbide(Cr,Fe)_(23)C_6 precipitates. As a result, the wear mass loss of the aged sample is higher than thatof the as-welded sample.
文摘In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen surface components with alloys that would not be possible to process otherwise. This work used Plasma transferred arc (PTA) hardfacing for surface alloying. Different amounts of aluminium powder, 5-25%, were added to a Ni based superalloy, from Hastealloy C family, in the atomized form. The mixture was homogeneized in a ball mill and PTA deposited on carbon steel substrate. The influence of different processing parameters on the final surface alloy was evaluated as current intensity and depositing velocity were varied. Coatings were characterized by optical and scanning electronic microscopy, X-ray diffraction and Vickers microhardness profiles, under a 500g load. Results showed that PTA hardfacing is an adequate surface alloying. For the conditions tested increasing hardness was obtained by solid solution for the lower amounts of Al added and due to the new intermetallic phases for the richer Al mixture.
文摘The powders transportation in the plasma transferred-arc space during the coaxial powder-feeding surface depositing process was theoretical evaluated. The axial acceleration and velocity of various particles in the arc column were described. According to the results from theoretical calculations, it was found that: (1) The powder’s transporting velocity is much lower than the plasma fluid’s; (2) The powders axial transporting velocity presents “valley-shape distribution” along plasma arc column traverse section when surfacing current is greater than 100 A . When the arc current exceeding 100 A , the powders coming through the center field of arc column will transport slower than the powder through the outer-around field of arc column. It is in the field where the temperature is in the range of 9 000 K ~11 000 K that the particles can achieve its maximum axial acceleration in the argon plasma space. (3) For the given powder mass density, the smaller its size is, the greater its acceleration and the greater its averaged transporting velocity will be in the arc space; (4) For the given powder size, the greater its mass density is, the smaller its acceleration and averaged velocity will be in the arc space.
基金the financial support to carry out this investigation through sponsored research and development project No.2003/20/36/1-BRNS.
文摘The application of response surface methodology was highlighted to predict and optimize the percentage of dilution of iron-based hardfaced surface produced by the PTA (plasma tratisferred arc welding) process. The experiments were conducted based on five-factor five-level central composite rotatable design with full replication technique and a mathematical model was developed using response surface methodology. Furthermore, the response surface methodology was also used to optimize the process parameters that yielded the lowest percentage of dilution.
文摘Arc-added glow discharge plasma penetrating technique is a new surface coating method. With the help of vacuum arc discharge, a cold cathode arc source continually emits ion beams of coating elements with high currency density and high ionizing ratio. As the ion bombard and diffusion working on, the surface of the parts form deposited layer, penetrated layer and hybrid layer. Under lab condition, a commercial magnesium alloy Az91 had been coated with Ti film layer with the aim of improving its’ anti-corrosion performance. This paper mainly summarized our studies on the testing and analyzing of the coating layer. The composition and microstructure of the coating layer had been analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the surface appearance had been surveyed by scanning electronic microscope (SEM). The adhesion strength between film and matrix had been evaluated by experiments of sticking-tearing. The results indicated that the coated layer on magnesium alloy were homogeneous, dense and robustly adhered.
基金Funded by the National Science and Technology Support Project(2006BAK02B01-02)
文摘Alloy powders including Ni60, WC, CrC, and TiC with different mass ratios were deposited on medium carbon low alloy steel by plasma welding. Through the experiments, the optimal alloy powder reinforcing cutter tool surface properties were discovered. The wear resistance properties were investigated on the impact abrasive wear tester. The experimental results show that in terms of microstructure, there exists the shape of herringbone, spider mesh, broken flower structures in coatings. In addition, fusion area of four specimens surfacing welding layer displays a large number of acicular martensite with a small amount of austenite. The coating mainly consists of Ni-Cr-Fe austenitic phase and the other precipitates. TiC density is smaller, its content is less in alloy powder, in the process of surfacing welding, TiC is melted fully, which is mainly distributed in surface layer and middle layer of hard facing layer. The content of TiC gradually reduces from surface layer of hard facing layer to the fusion area. Compared to TiC, the density of tungsten carbide and chromium carbide is larger, there exist tungsten carbide and chromium carbide particles, which are not completely melted near the fusion area. The micro-hardness presents gradient change from the fusion area to the surface layer of hard facing layer, and the hardness of the middle layer is slightly lower than that of the fusion area, and the hardness increases near the surface layer.
文摘A wear resistant (Cr, Fe)7C3/γ-Fe ceramalcomposite coating wasfabricatedon substrate of a 0.45% C carbon steel by plasma transferred arc (PTA) cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness and dry sliding wear resistance of the coating were evaluated. Results indicate that the plasma transferred arc clad ceramal composite coating has a rapidly solidified microstructure consisting of blocky primary (Cr, Fe)7C3 and the interblocky ( Cr, Fe)7C3/γ-Fe eutectics and is metallurgically bonded to the 0.45%C carbon steel substrate. The ceramal composite coating has high hardness and excellent wear resistance under dry sliding wear test condition.
文摘This paper presents an investigation on depo- sition of Inconel-625 using laser rapid manufacturing (LRM) and plasma transferred arc (PTA) deposition in individual and tandem mode. LRM has advantages in terms of dimensional accuracy, improved mechanical properties, finer process control, reduced heat input and lower thermal distortion, while PTA scores more in terms of lower initial investment, lower running cost and higher deposition rate. To quantify the clubbed advantages and limitations of both processes, these were studied individually and in tandem. A number of samples were deposited at different process parameters like power, scan speed, powder feed rate. They were subjected to tensile test, adhesion-cohesion test, impact test and micro hardness measurement. The results of individual tests showed the comparable mechanical prop- erties with i20% variation. The mixed dendritic-cellular and dendritic-columnar microstructures were respectively observed for LRM and PTA deposits with a distinct inter- face for the case of tandem deposition. The interface strength of tandem deposits was evaluated employing adhesion-cohesion test, and it was found to be (325 i 35) MPa. The study confirmed the viability of LRM and PTA deposition in tandem for hybrid manufacturing.
文摘The plasma transferred arc (PTA) forming remanufacturing technology was introduced in this paper. This technology includes plasma surfacing, deposition and rapid forming technology. With self-developed plasma forming system, the thrust of engine cylinder body was remanufactured by PTA powder surfacing. In the concrete, the Nil5 alloy was deposited on the thrust face of the body in order to recover its dimension. In addition, the reman- ufacturing forming with Fe-based, Inconel 625 alloy was studied. The microstructure and hardness of the as-depos- ited materials were investigated.
文摘Wear tests are essential in the design of parts intended to work in environments that subject a part to high wear.Wear tests involve high cost and lengthy experiments,and require special test equipment.The use of machine learning algorithms for wear loss quantity predictions is a potentially effective means to eliminate the disadvantages of experimental methods such as cost,labor,and time.In this study,wear loss data of AISI 1020 steel coated by using a plasma transfer arc welding(PTAW)method with FeCrC,FeW,and FeB powders mixed in different ratios were obtained experimentally by some of the researchers in our group.The mechanical properties of the coating layers were detected by microhardness measurements and dry sliding wear tests.The wear tests were performed at three different loads(19.62,39.24,and 58.86 N)over a sliding distance of 900 m.In this study,models have been developed by using four different machine learning algorithms(an artificial neural network(ANN),extreme learning machine(ELM),kernel-based extreme learning machine(KELM),and weighted extreme learning machine(WELM))on the data set obtained from the wear test experiments.The R2 value was calculated as 0.9729 in the model designed with WELM,which obtained the best performance among the models evaluated.