We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength ...We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength infrared(LWIR)regions. Periodic gold disks are selectively patterned onto the top layer of suspended SiN/VO_2/SiN sandwich-structure.We employ the finite element method to model this structure in COMSOL Multiphysics including a proposed method of modulating the absorption peak. Simulation results show that the absorber has two absorption peaks at wavelengths λ =4.8 μm and λ = 9 μm with the absorption magnitudes more than 0.98 and 0.94 in MWIR and LWIR regions, respectively. In addition, the absorber achieves broad spectrum absorption in LWIR region, in the meanwhile, tunable dual-band absorption peaks can be achieved by variable heights of cavity as well as diameters and periodicity of disk. Thus, this designed absorber can be a good candidate for enhancing the performance of dual band uncooled infrared detector, furthermore, the manufacturing process of cavity can be easily simplified so that the reliability of such devices can be improved.展开更多
We investigate the guiding modes of spoof surface plasmon polaritons (SPPs) on a symmetric ultra-thin plasmonic structure. From the analysis, we deduce the operating frequency region of the single-mode propagation. ...We investigate the guiding modes of spoof surface plasmon polaritons (SPPs) on a symmetric ultra-thin plasmonic structure. From the analysis, we deduce the operating frequency region of the single-mode propagation. Based on this property, a spoof SPPs lowpass filter is then constituted in the microwave frequency. By introducing a transmission zero at the lower frequency band using a pair of stepped-impedance stubs, a wide passband filter is further realized. The proposed filter is fed by.a transducer composed of a microstrip line with a flaring ground. The simulated results show that the presented filter has an extremely wide upper stopband in addition to excellent passband filtering characteristics such as low loss, wide band, and high square ratio. A prototype passband filter is also fabricated to validate the predicted performances. The proposed spoof-SPPs filter is believed to be very promising for other surface waveguide components in microwave and terahertz bands.展开更多
The third-order nonlinear optical properties of water-soluble Cu Se nanocrystals are studied in the near infrared range of 700-980 nm using a femtosecond pulsed laser by the Z-scan technique. It is observed that the n...The third-order nonlinear optical properties of water-soluble Cu Se nanocrystals are studied in the near infrared range of 700-980 nm using a femtosecond pulsed laser by the Z-scan technique. It is observed that the nonlinear optical response of Cu Se nanocrystals is sensitively dependent on the excitation wavelength and exhibits the enhanced nonlinearity compared with other selenides such as ZnSe and CdSe. The W-shaped Z-scan trace, a mixture of the reversed saturated absorption and saturated absorption, is observed near the plasmon resonance band of Cu Se nanocrystals, which is attributed to the state-filling of free carriers generated by copper vacancies (self-doping effect) of Cu Se nanocrystals as well as the hot carrier thermal effect upon intense femtosecond laser excitation. The large nonlinear optical response and tunable plasmonic band make Cu Se nanocrystals promising materials for applications in ultra-fast all-optical switching devices as well as nonlinear nanosensors.展开更多
A kind of plasmonic open waveguide, which is a periodic subwavelength metallic Domino array, is investigated both theoretically and experimentally in this paper. Based on the guiding mechanism of spoof surface plasmon...A kind of plasmonic open waveguide, which is a periodic subwavelength metallic Domino array, is investigated both theoretically and experimentally in this paper. Based on the guiding mechanism of spoof surface plasmon polaritions (spoof SPPs), the transmission properties of this waveguide are controllable by altering the geometric parameters of the periodic structure. Microwave experimental results verify the high efficiency of wave guiding in such open waveguide, as predicted in theoretic analysis.展开更多
We have designed and proposed the edge modes supported by graphene ribbons and the planar band-pass filter consist- ing of graphene ribbons coupled to a graphene ring resonator by using the finite-difference time-doma...We have designed and proposed the edge modes supported by graphene ribbons and the planar band-pass filter consist- ing of graphene ribbons coupled to a graphene ring resonator by using the finite-difference time-domain numerical method. Simulation results show that the edge modes improve the electromagnetic coupling between devices. This structure works as a novel, tunable mid-infrared band-pass filter. Our studies will benefit the fabrication of planar, ultra-compact nano-scale devices in the mid-infrared region. A power splitter consisting of two output ribbons that is useful in photonic integrated devices and circuits is also designed and simulated. These devices are useful for designing ultra-compact planar devices in photonic integrated circuits.展开更多
Silver nanoparticles of various sizes were prepared at room temperature using silver nitrate as a precursor, various molar ratios of sodium citrate as a surfactant stabilizing material and sodium borohydride as a redu...Silver nanoparticles of various sizes were prepared at room temperature using silver nitrate as a precursor, various molar ratios of sodium citrate as a surfactant stabilizing material and sodium borohydride as a reducing agent. The morphology, distribution and sphericity of the particles were assessed in images from a transmission electron microscope (TEM). The sizes of the particles were calculated as being 9, 11 and 14 nm. The effects of the particles’ sizes on the plasmon bands were confirmed by ultraviolet-visible spectra measurements. The prepared samples were applied in photo catalysis of 4-Nitrophenol (4-NP), and the rate constant was determined as 0.05 s<sup>-1</sup>, 0.0015 s<sup>-1</sup> and 0.00021 s<sup>-1</sup> for particles of 9 nm, 11 nm and 14 nm, respectively. Due to their high surface energy, the smaller particle sizes were more active in the photo catalytic application.展开更多
In this work, different sizes of gold nanoparticles were synthesized at room temperature by using trisodium citrate as a surfactant stabilizing agent and sodium borohydride as a reducing agent. Transmission Electron M...In this work, different sizes of gold nanoparticles were synthesized at room temperature by using trisodium citrate as a surfactant stabilizing agent and sodium borohydride as a reducing agent. Transmission Electron Microscopy (TEM) confirmed that the samples were synthesized in spherical shapes with three different particle sizes: 4 nm, 7 nm and 11 nm. Ultraviolet-visible spectra measurements were used to analyze the way that surface plasmon bands were affected by the different particles sizes. The effect of sphere size on photocatalytic reduction of 4-Nitrophenol was then studied and the rate constant of the reduction was calculated to be 0.014 s<sup>-1</sup>, 0.0091 s<sup>-1</sup> and 0.003 s<sup>-1</sup> for particles sizes of 4 nm, 7 nm and 11 nm, respectively. The results obtained indicated that small particles were more active in catalytic reduction due to their high surface energy.展开更多
基金supported by the One Hundred Talents Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.61376083 and 61307077)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.2013M530613 and 2015T80080)the Guangxi Key Laboratory of Precision Navigation Technology and Application(Grant Nos.DH201505,DH201510,and DH201511)
文摘We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength infrared(LWIR)regions. Periodic gold disks are selectively patterned onto the top layer of suspended SiN/VO_2/SiN sandwich-structure.We employ the finite element method to model this structure in COMSOL Multiphysics including a proposed method of modulating the absorption peak. Simulation results show that the absorber has two absorption peaks at wavelengths λ =4.8 μm and λ = 9 μm with the absorption magnitudes more than 0.98 and 0.94 in MWIR and LWIR regions, respectively. In addition, the absorber achieves broad spectrum absorption in LWIR region, in the meanwhile, tunable dual-band absorption peaks can be achieved by variable heights of cavity as well as diameters and periodicity of disk. Thus, this designed absorber can be a good candidate for enhancing the performance of dual band uncooled infrared detector, furthermore, the manufacturing process of cavity can be easily simplified so that the reliability of such devices can be improved.
基金Project supported by the Key Grant Project of Ministry of Education of China(Grant No.313029)the FDCT Research Grant from Macao Science and Technology Development Fund,China(Grant No.051/2014/A1)the Multi-Year Research Grant from University of Macao,Macao SAR,China(Grant No.MYRG2014-00079-FST)
文摘We investigate the guiding modes of spoof surface plasmon polaritons (SPPs) on a symmetric ultra-thin plasmonic structure. From the analysis, we deduce the operating frequency region of the single-mode propagation. Based on this property, a spoof SPPs lowpass filter is then constituted in the microwave frequency. By introducing a transmission zero at the lower frequency band using a pair of stepped-impedance stubs, a wide passband filter is further realized. The proposed filter is fed by.a transducer composed of a microstrip line with a flaring ground. The simulated results show that the presented filter has an extremely wide upper stopband in addition to excellent passband filtering characteristics such as low loss, wide band, and high square ratio. A prototype passband filter is also fabricated to validate the predicted performances. The proposed spoof-SPPs filter is believed to be very promising for other surface waveguide components in microwave and terahertz bands.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274302,11474276 and 11674240
文摘The third-order nonlinear optical properties of water-soluble Cu Se nanocrystals are studied in the near infrared range of 700-980 nm using a femtosecond pulsed laser by the Z-scan technique. It is observed that the nonlinear optical response of Cu Se nanocrystals is sensitively dependent on the excitation wavelength and exhibits the enhanced nonlinearity compared with other selenides such as ZnSe and CdSe. The W-shaped Z-scan trace, a mixture of the reversed saturated absorption and saturated absorption, is observed near the plasmon resonance band of Cu Se nanocrystals, which is attributed to the state-filling of free carriers generated by copper vacancies (self-doping effect) of Cu Se nanocrystals as well as the hot carrier thermal effect upon intense femtosecond laser excitation. The large nonlinear optical response and tunable plasmonic band make Cu Se nanocrystals promising materials for applications in ultra-fast all-optical switching devices as well as nonlinear nanosensors.
文摘A kind of plasmonic open waveguide, which is a periodic subwavelength metallic Domino array, is investigated both theoretically and experimentally in this paper. Based on the guiding mechanism of spoof surface plasmon polaritions (spoof SPPs), the transmission properties of this waveguide are controllable by altering the geometric parameters of the periodic structure. Microwave experimental results verify the high efficiency of wave guiding in such open waveguide, as predicted in theoretic analysis.
文摘We have designed and proposed the edge modes supported by graphene ribbons and the planar band-pass filter consist- ing of graphene ribbons coupled to a graphene ring resonator by using the finite-difference time-domain numerical method. Simulation results show that the edge modes improve the electromagnetic coupling between devices. This structure works as a novel, tunable mid-infrared band-pass filter. Our studies will benefit the fabrication of planar, ultra-compact nano-scale devices in the mid-infrared region. A power splitter consisting of two output ribbons that is useful in photonic integrated devices and circuits is also designed and simulated. These devices are useful for designing ultra-compact planar devices in photonic integrated circuits.
文摘Silver nanoparticles of various sizes were prepared at room temperature using silver nitrate as a precursor, various molar ratios of sodium citrate as a surfactant stabilizing material and sodium borohydride as a reducing agent. The morphology, distribution and sphericity of the particles were assessed in images from a transmission electron microscope (TEM). The sizes of the particles were calculated as being 9, 11 and 14 nm. The effects of the particles’ sizes on the plasmon bands were confirmed by ultraviolet-visible spectra measurements. The prepared samples were applied in photo catalysis of 4-Nitrophenol (4-NP), and the rate constant was determined as 0.05 s<sup>-1</sup>, 0.0015 s<sup>-1</sup> and 0.00021 s<sup>-1</sup> for particles of 9 nm, 11 nm and 14 nm, respectively. Due to their high surface energy, the smaller particle sizes were more active in the photo catalytic application.
文摘In this work, different sizes of gold nanoparticles were synthesized at room temperature by using trisodium citrate as a surfactant stabilizing agent and sodium borohydride as a reducing agent. Transmission Electron Microscopy (TEM) confirmed that the samples were synthesized in spherical shapes with three different particle sizes: 4 nm, 7 nm and 11 nm. Ultraviolet-visible spectra measurements were used to analyze the way that surface plasmon bands were affected by the different particles sizes. The effect of sphere size on photocatalytic reduction of 4-Nitrophenol was then studied and the rate constant of the reduction was calculated to be 0.014 s<sup>-1</sup>, 0.0091 s<sup>-1</sup> and 0.003 s<sup>-1</sup> for particles sizes of 4 nm, 7 nm and 11 nm, respectively. The results obtained indicated that small particles were more active in catalytic reduction due to their high surface energy.