The sensing sensitivity of the wavelength interrogated surface plasmon resonance(WISPR) biosensor could be improved by self-assembly of nanoporous thin-film of TiO2 nanoparticles/DNA(TiO2/DNA)n(n is the number of...The sensing sensitivity of the wavelength interrogated surface plasmon resonance(WISPR) biosensor could be improved by self-assembly of nanoporous thin-film of TiO2 nanoparticles/DNA(TiO2/DNA)n(n is the number of bilayer) on wavelength interrogated surface plasmon resonance(WISPR) chips.The growth behavior and surface structure of the nanoporous thin-film were investigated by UV-Vis spectroscopy and scanning electron microscopy,respectively.The home-made WISPR sensor with Krestchmann configuration consisted of a tungsten-halogen lamp as a photon source and a CCD camera as the detector.After the deposition of (DNA/TiO2)n thin film on WISPR chips,the resonance peak of the reflection spectra appeared in air.With the increases of n,the resonance wavelength gradually red shifted,which is consistent with the simulated results.After the optimization of the porous film,the WISPR biosensor was utilized to detect low-molecular-weight analytes,such as biotin.The result demonstrates that the sensitivity of [poly(styrene sulfonate)/polyally lamine hydrochlorides]5(PSS/PAH)5 could be 4 times higher than that of polyelectrolyte multilayer modified WISPR sensor.展开更多
The sensing sensitivity of wavelength interrogated surface plasmon resonance(WISPR) biosensor is improved by self-assembly of polyelectrolyte multilayer(PEM) film of poly(allylamine hydrochloride)(PAH)/ poly(...The sensing sensitivity of wavelength interrogated surface plasmon resonance(WISPR) biosensor is improved by self-assembly of polyelectrolyte multilayer(PEM) film of poly(allylamine hydrochloride)(PAH)/ poly(sodium-p-styrenesulfonate)(PSS) on the Au film coated glass chip via the layer-by-layer(LBL) technique. The home-made WISPR with Krestchmann configuration consists of a tungsten-halogen lamp as a photon source and a charge coupled device(CCD) camera as the detector. The influence of PEM film thickness on the optical properties of WISPR biosensors was investigated theoretically and experimentally. In order to achieve higher sensing sensitivity, the PEM film thickness has to be designed as ca.14 nm at an Au layer thickness of 50 nm and an incidental angle of 11.8°. Furthermore, the PEM coated WISPR biosensor can serve as highly sensitive biosensor, in which the biotin-streptavidin is used as bioconjugate pair. After deposition of the PEM film of (biotin/PAH)(PSS/PAH)3, the modified WISPR biosensor is more sensitive to the low concentration(〈0.01 mg/mL) of streptavidin. And the sensing sensitivity can be further increased by one order of magnitude compared with that of the biotin/PAH coated WISPR biosensor. Thus, such low-cost, high-performance and efficient PEM-coated WISPR biosensors have great potentials in a diverse array of fields such as medical diagnostics, drug screening, food safety analysis, environmental monitoring, and homeland security.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.91123029, 61077066, 61340032), the National High Technology Research and Development Program of China(No.2012AA063302) and the Natural Science Foundation of Shandong Province, China(No.ZR2012CM029).
文摘The sensing sensitivity of the wavelength interrogated surface plasmon resonance(WISPR) biosensor could be improved by self-assembly of nanoporous thin-film of TiO2 nanoparticles/DNA(TiO2/DNA)n(n is the number of bilayer) on wavelength interrogated surface plasmon resonance(WISPR) chips.The growth behavior and surface structure of the nanoporous thin-film were investigated by UV-Vis spectroscopy and scanning electron microscopy,respectively.The home-made WISPR sensor with Krestchmann configuration consisted of a tungsten-halogen lamp as a photon source and a CCD camera as the detector.After the deposition of (DNA/TiO2)n thin film on WISPR chips,the resonance peak of the reflection spectra appeared in air.With the increases of n,the resonance wavelength gradually red shifted,which is consistent with the simulated results.After the optimization of the porous film,the WISPR biosensor was utilized to detect low-molecular-weight analytes,such as biotin.The result demonstrates that the sensitivity of [poly(styrene sulfonate)/polyally lamine hydrochlorides]5(PSS/PAH)5 could be 4 times higher than that of polyelectrolyte multilayer modified WISPR sensor.
基金Supported by the National High Technology Research and Development Program of China(No.2012AA063302), the National Natural Science Foundation of China(Nos.91123029, 61077066) and the Natural Science Foundation of Shandong Province, China(Nos.ZR2011FQ025, ZR2012CM029).
文摘The sensing sensitivity of wavelength interrogated surface plasmon resonance(WISPR) biosensor is improved by self-assembly of polyelectrolyte multilayer(PEM) film of poly(allylamine hydrochloride)(PAH)/ poly(sodium-p-styrenesulfonate)(PSS) on the Au film coated glass chip via the layer-by-layer(LBL) technique. The home-made WISPR with Krestchmann configuration consists of a tungsten-halogen lamp as a photon source and a charge coupled device(CCD) camera as the detector. The influence of PEM film thickness on the optical properties of WISPR biosensors was investigated theoretically and experimentally. In order to achieve higher sensing sensitivity, the PEM film thickness has to be designed as ca.14 nm at an Au layer thickness of 50 nm and an incidental angle of 11.8°. Furthermore, the PEM coated WISPR biosensor can serve as highly sensitive biosensor, in which the biotin-streptavidin is used as bioconjugate pair. After deposition of the PEM film of (biotin/PAH)(PSS/PAH)3, the modified WISPR biosensor is more sensitive to the low concentration(〈0.01 mg/mL) of streptavidin. And the sensing sensitivity can be further increased by one order of magnitude compared with that of the biotin/PAH coated WISPR biosensor. Thus, such low-cost, high-performance and efficient PEM-coated WISPR biosensors have great potentials in a diverse array of fields such as medical diagnostics, drug screening, food safety analysis, environmental monitoring, and homeland security.