Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing ...Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.展开更多
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ...Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.展开更多
This paper is the continuation of our previous research in which we studied such aspects of CARS spectroscopy in dipole-active crystals by polaritons as the regimes of coherent simultaneous propagation of three waves ...This paper is the continuation of our previous research in which we studied such aspects of CARS spectroscopy in dipole-active crystals by polaritons as the regimes of coherent simultaneous propagation of three waves (anti-Stokes, Stokes, and the pump field) to increase the efficiency of CARS as a spectroscopic method. In our previous research, we have shown the possibility of the existence of simultons at all frequencies of interacting waves. All interacting waves were supposed to be linearly polarised and plane, the medium was assumed to be nonmagnetic, and the medium was transparent at frequencies of anti-Stokes, Stokes, and the pump field (laser). The purpose of the present paper is to consider the energy carried by electromagnetic waves and its relationship with the gain factor and velocity of the simultons.展开更多
Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telec...Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telecom wavelength.By utilizing the phase transition-induced refractive index change of GST,coupled with interference effects,a nanoantenna pair containing GST is designed to realize switchable one-way launching of SPPs.Devices based on the nanoantenna pairs are proposed to manipulate SPPs,including the direction tuning of SPP beams,switchable SPP focusing,and switchable cosine–Gauss SPP beam generating.Our design can be employed in compact optical circuits and photonics integration.展开更多
The system of shortened Maxwell’s equations simulating the processes of evolution of the stimulated Raman scattering (SRS) by polaritons in anisotropic dipole-active crystals is obtained. The theory was developed for...The system of shortened Maxwell’s equations simulating the processes of evolution of the stimulated Raman scattering (SRS) by polaritons in anisotropic dipole-active crystals is obtained. The theory was developed for the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is a linearly polarized plane electromagnetic wave. We report the results of the theoretical investigation of the possibility of the existence of a regime of pulse propagation as simultaneous travel of solitary waves in coherent anti-Stokes stimulated Raman scattering by polaritons in anisotropic crystals. The emphasis was made on the existence of both Stokes and anti-Stokes pulses propagating with two stable and perpendicular to the direction of travel polarizations. We showed the theoretical possibility of simultaneous propagation of pulses not only at frequencies of Stokes and anti-Stokes waves but the pump frequency as well. We obtained the expression for the gain factor g. It is also shown that the expression for g is consistent with the experimental results for the spectra of ZnS.展开更多
The properties of surface magnetoplasmon polaritons(SMPPs)in a symmetric structure,composed of two semi-infinite regions of high-density two-dimensional electron gas(2DEG)separated by a thin film in Voigt configuratio...The properties of surface magnetoplasmon polaritons(SMPPs)in a symmetric structure,composed of two semi-infinite regions of high-density two-dimensional electron gas(2DEG)separated by a thin film in Voigt configuration,are investigated.The normal and absorption dispersion relations for the transverse magnetic polarization are derived by correlating Maxwell’s equation and the boundary conditions.It is demonstrated that the features of SMPPs are greatly influenced by the external magnetic field,collision frequency of 2DEG,the dielectric constant,and the thickness of the thin film,suggesting that the locations and propagation lengths of SMPPs can be governed accordingly.It is shown that the symmetry of the physical geometry preserves the symmetry of the dispersion relations of SMPPs.Furthermore,it is discovered that as the external magnetic field increases,the penetration depth of SMPPs decreases,while their energy loss reduces,implying that plasmons can propagate for longer distances.Additionally,it is observed that SMPPs in the symmetric configuration have a longer lifetime than those in the asymmetric configuration.展开更多
We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's...We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's nor Forster's mechanism of resonance energy transfer(RET) could account fully for the observed rates, which exceed 85% with significant temperature dependence. But there exists an alternative pathway on RET mediated by intermediate states of resonantly confined exciton–polaritons. Such a mechanism was used to analyze artificial photosynthesis in organic fluorescents [Phys.Rev. Lett. 122 257402(2019)]. For metallophosphors, the confined modes act as extended states lying between the molecular S_(1) and T_(1) states, offering a bridge for the long-lived T_(1) excitons to migrate from donors to acceptors. Population dynamics with parameters taken entirely based on experiments fits the observed lifetimes of phosphorescence across a broad range of doping and temperature.展开更多
Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dime...Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems.展开更多
Surface plasmon polaritons excited by an electron beam can be transformed into coherent and tunable light radiation waves with power enhancement in the simple structure of a metal film with a dielectric medium loading...Surface plasmon polaritons excited by an electron beam can be transformed into coherent and tunable light radiation waves with power enhancement in the simple structure of a metal film with a dielectric medium loading. In this paper, the process of the radiation transformation of this radiation, and the dependencies of the radiation characteristics on the parameters of the structure and the electron beam are studied in detail. The radiation power enhancement is greatly influenced by the beam energy and the film thickness in the infrared to ultraviolet frequency region. Up to 122 times radiation power enhancement and 6.5% radiation frequency tuning band can be obtained by optimizing the beam energy and the parameters of the film.展开更多
A new type of cavity polariton,the optical Tamm state(OTS) polariton,is proposed to be realized by sandwiching a quantum well(QW) between a gold layer and a distributed Bragg reflector(DBR).It is shown that OTS ...A new type of cavity polariton,the optical Tamm state(OTS) polariton,is proposed to be realized by sandwiching a quantum well(QW) between a gold layer and a distributed Bragg reflector(DBR).It is shown that OTS polaritons can be generated from the strong couplings between the QW excitons and the free OTSs.In addition,if a second gold layer is introduced into the bottom of the DBR,two independent free OTSs can interact strongly with the QW excitons to produce extra OTS polaritons.展开更多
We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, th...We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.展开更多
Long-range surface plasmon polariton (LRSPP) modes in an asymmetrical system, in which the thin metal film is sandwiched between a semi-infinite substrate and a high permittivity polymer film with a finite thickness...Long-range surface plasmon polariton (LRSPP) modes in an asymmetrical system, in which the thin metal film is sandwiched between a semi-infinite substrate and a high permittivity polymer film with a finite thickness, are theoret~ ically calculated and analyzed. Due to the high permittivity of the polymer film, at proper polymer film thicknesses, the index-matching condition of the dielectrics at both sides of the metal can be satisfied for supporting LRSPP modes, and the electromagnetic field above the metal can be localized well. It is found that these LRSPP modes have both long propagation lengths and subwavelength mode expansion above the metal at the optimal polymer film thickncsses. Furthermore, the requirements on the refractive index and the thickness of the polymer film to support LRSPP modes at the optimal thicknesses are found to be not critical.展开更多
In this paper the bulk exciton polaritons in ternary mixed crystals (TMCs) are investigated in the Born-Huang approximation. The numerical results of the polariton frequencies as functions of the wave-vector and the...In this paper the bulk exciton polaritons in ternary mixed crystals (TMCs) are investigated in the Born-Huang approximation. The numerical results of the polariton frequencies as functions of the wave-vector and the compositions for ternary mixed crystals AlxGa1-xAs, CdxZn1-xSe, and AlxGa1-xN are obtained and discussed. The new dispersion characteristics for exciton-polaritons in TMC systems are found in comparison with binary crystals. The splitting of the two branches of exciton-polariton frequencies varies nonlinearly with the composition of TMCs and has a minimum in the long-wavelength range.展开更多
The plasma parameters of planar-type surface-wave plasmas (SWPs) are diagnosed based on the resonant excitation of surface plasmon polaritons (SPPs). The plasma parameter distributions are obtained by changing the...The plasma parameters of planar-type surface-wave plasmas (SWPs) are diagnosed based on the resonant excitation of surface plasmon polaritons (SPPs). The plasma parameter distributions are obtained by changing the discharge conditions of gas pressure and incident power. The measured experimental results show that the plasma near the heating layer is excited by surface waves of SPPs while the plasma located downstream originates from diffusion Moreover, the influence of high-frequency oscillations plays a significant role in producing the proposed SWPs with bi-Maxwellian electron energy distributions.展开更多
Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air.The plasma jet plumes are generated at the end of a metal wire placed in the mi...Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air.The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes.The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons.Moreover,for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave,the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas,frequencies of pulsed modulator,duty cycles of pulsed microwave,peak values of input microwave power,and even by using different materials of dielectric tubes.In addition,the emission spectrum,the plume temperature,and other plasma parameters are measured,which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications.展开更多
Explicit visualization of different components of surface plasmon polaritons(SPPs) propagating at dielectric/metal interfaces is crucial in offering chances for the detailed design and control of the functionalities o...Explicit visualization of different components of surface plasmon polaritons(SPPs) propagating at dielectric/metal interfaces is crucial in offering chances for the detailed design and control of the functionalities of plasmonic nanodevices in the future. Here, we reported independent imaging of the vertical and horizontal components of SPPs launched from a rectangular trench in the gold film by a 400-nm laser-assisted near-infrared(NIR) femtosecond laser time-resolved photoemission electron microscopy(TR-PEEM). The experiments demonstrate that distinct imaging of different components of SPPs field can be easily achieved by introducing the 400-nm laser. It can circumvent the risk of sample damage and information loss of excited SPPs field that is generally confronted in the usual NIR laser TR-PEEM scheme. The underlying mechanism for realizing distinct imaging of different components of the SPPs field with two-color PEEM is revealed via measuring the double logarithmic dependence of photoemission yield with the 800-nm and 400-nm pulse powers of different polarizations. Moreover, it is found that the PEEM image quality of the vertical and horizontal components of the SPPs field is nearly independent of the 400-nm pulse polarization. These results pave a way for SPPs-based applications and offer a possible solution for drawing a space-time field of SPPs in three dimensions.展开更多
Resonance cavity is a basic element in optics,which has wide applications in optical devices.Coupled cavities(CCs)designed in metal-insulator-metal(MIM)bus waveguide are investigated through the finite difference time...Resonance cavity is a basic element in optics,which has wide applications in optical devices.Coupled cavities(CCs)designed in metal-insulator-metal(MIM)bus waveguide are investigated through the finite difference time domain method and coupled-mode theory.In the CCs,the resonant modes of the surface plasmon polaritons(SPPs)split with the thickness decreasing of the middle baffle.Through the coupled-mode theory analysis,it is found that the phase differences introduced in opposite and positive couplings between two cavities lead to mode splitting.The resonant wavelength of positive coupling mode can be tuned in a large range(about 644 nm)through adjusting the coupling strength,which is quite different from the classical adjustment of the optical path in a single cavity.Based on the resonances of the CCs in the MIM waveguide,more compact devices can be designed to manipulate SPPs propagation.A device is designed to realize flexible multiple-wavelength SPPs routing.The coupling in CC structures can be applied to the design of easy-integrated laser cavities,filters,multiple-wavelength management devices in SPPs circuits,nanosensors,etc.展开更多
We present a detailed analysis on mode evolution of gratingcoupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guidedwave theory. The eigenvalue equations for SPPs modes are discussed, re...We present a detailed analysis on mode evolution of gratingcoupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guidedwave theory. The eigenvalue equations for SPPs modes are discussed, revealing that cylindrical metal waveguides only support TM01 and HEm1 surface modes. During propagation on the metal tip, the gratingcoupled SPPs are converted to HE31, HE21, HE11 and TM01 successively, and these modes are sequentially cut off except TM01. The TM01 mode further propagates with drastically increasing effective mode index and is converted to localized surface plasmons (LSPs) at the tip apex, which is responsible for plasmonic nanofocusing. The gapmode plasmons can be excited with the focusing TM01 mode by approaching a metal substrate to the tip apex, resulting in further enhanced electric field and reduced size of the plasmonic focus.展开更多
A novel leaky-wave antenna(LWA)utilizing spoof surface plasmon polaritons(SSPPs)excitation is proposed with continuous scanning range from endfire to forward.The designed transmission line unit supports two SSPPS mode...A novel leaky-wave antenna(LWA)utilizing spoof surface plasmon polaritons(SSPPs)excitation is proposed with continuous scanning range from endfire to forward.The designed transmission line unit supports two SSPPS modes,of which the 2nd order mode is applied in the design.A novel strategy has been devised to excite the spatial radiation of the-1st order harmonics by arranging periodic counter changed sinusoidal structures on both sides of the SSPPs transmission line.Both full-wave simulation and measurement results show that the proposed LWA presents wide scanning angle from endfire to forward.In the frequency range from 4 GHz to 10 GHz,LWAs achieve scanning from 90°to+20°,covering the entire backward quadrant continuously.展开更多
基金supports from the National Natural Science Foundation of China(Grant Nos.62288101,and 61971134)National Key Research and Development Program of China(Grant Nos.2021YFB3200502,and 2017YFA0700200)+2 种基金the Major Project of the Natural Science Foundation of Jiangsu Province(Grant No.BK20212002)the Fundamental Research Funds for Central Universities(Grant No.2242021R41078)the 111 Project(Grant No.111-2-05).
文摘Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.
基金supported by the National Natural Science Foundation of China(Nos.52106099 and 51576004)the Natural Science Foundation of Shandong Province(No.ZR2022YQ57)the Taishan Scholars Program.
文摘Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.
文摘This paper is the continuation of our previous research in which we studied such aspects of CARS spectroscopy in dipole-active crystals by polaritons as the regimes of coherent simultaneous propagation of three waves (anti-Stokes, Stokes, and the pump field) to increase the efficiency of CARS as a spectroscopic method. In our previous research, we have shown the possibility of the existence of simultons at all frequencies of interacting waves. All interacting waves were supposed to be linearly polarised and plane, the medium was assumed to be nonmagnetic, and the medium was transparent at frequencies of anti-Stokes, Stokes, and the pump field (laser). The purpose of the present paper is to consider the energy carried by electromagnetic waves and its relationship with the gain factor and velocity of the simultons.
文摘Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telecom wavelength.By utilizing the phase transition-induced refractive index change of GST,coupled with interference effects,a nanoantenna pair containing GST is designed to realize switchable one-way launching of SPPs.Devices based on the nanoantenna pairs are proposed to manipulate SPPs,including the direction tuning of SPP beams,switchable SPP focusing,and switchable cosine–Gauss SPP beam generating.Our design can be employed in compact optical circuits and photonics integration.
文摘The system of shortened Maxwell’s equations simulating the processes of evolution of the stimulated Raman scattering (SRS) by polaritons in anisotropic dipole-active crystals is obtained. The theory was developed for the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is a linearly polarized plane electromagnetic wave. We report the results of the theoretical investigation of the possibility of the existence of a regime of pulse propagation as simultaneous travel of solitary waves in coherent anti-Stokes stimulated Raman scattering by polaritons in anisotropic crystals. The emphasis was made on the existence of both Stokes and anti-Stokes pulses propagating with two stable and perpendicular to the direction of travel polarizations. We showed the theoretical possibility of simultaneous propagation of pulses not only at frequencies of Stokes and anti-Stokes waves but the pump frequency as well. We obtained the expression for the gain factor g. It is also shown that the expression for g is consistent with the experimental results for the spectra of ZnS.
基金supported by National Natural Science Foundation of China(No.11975175).
文摘The properties of surface magnetoplasmon polaritons(SMPPs)in a symmetric structure,composed of two semi-infinite regions of high-density two-dimensional electron gas(2DEG)separated by a thin film in Voigt configuration,are investigated.The normal and absorption dispersion relations for the transverse magnetic polarization are derived by correlating Maxwell’s equation and the boundary conditions.It is demonstrated that the features of SMPPs are greatly influenced by the external magnetic field,collision frequency of 2DEG,the dielectric constant,and the thickness of the thin film,suggesting that the locations and propagation lengths of SMPPs can be governed accordingly.It is shown that the symmetry of the physical geometry preserves the symmetry of the dispersion relations of SMPPs.Furthermore,it is discovered that as the external magnetic field increases,the penetration depth of SMPPs decreases,while their energy loss reduces,implying that plasmons can propagate for longer distances.Additionally,it is observed that SMPPs in the symmetric configuration have a longer lifetime than those in the asymmetric configuration.
基金Project supported by the National Natural Science Foundation of China (Grant No. 16Z103060007) (PA)。
文摘We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's nor Forster's mechanism of resonance energy transfer(RET) could account fully for the observed rates, which exceed 85% with significant temperature dependence. But there exists an alternative pathway on RET mediated by intermediate states of resonantly confined exciton–polaritons. Such a mechanism was used to analyze artificial photosynthesis in organic fluorescents [Phys.Rev. Lett. 122 257402(2019)]. For metallophosphors, the confined modes act as extended states lying between the molecular S_(1) and T_(1) states, offering a bridge for the long-lived T_(1) excitons to migrate from donors to acceptors. Population dynamics with parameters taken entirely based on experiments fits the observed lifetimes of phosphorescence across a broad range of doping and temperature.
基金supported by the Federal Program'Priority 2030'and NSFC(Project 62350610272)A.K.Samusev acknowledges Deutsche Forschungsgemeinschaft-project No.529710370。
文摘Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339801)the National Natural Science Foundation of China(Grant Nos.61231005,11305030,and 612111076)the National High Technology Research and Development Program of China(Grant No.2011AA010204)
文摘Surface plasmon polaritons excited by an electron beam can be transformed into coherent and tunable light radiation waves with power enhancement in the simple structure of a metal film with a dielectric medium loading. In this paper, the process of the radiation transformation of this radiation, and the dependencies of the radiation characteristics on the parameters of the structure and the electron beam are studied in detail. The radiation power enhancement is greatly influenced by the beam energy and the film thickness in the infrared to ultraviolet frequency region. Up to 122 times radiation power enhancement and 6.5% radiation frequency tuning band can be obtained by optimizing the beam energy and the parameters of the film.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61106045)
文摘A new type of cavity polariton,the optical Tamm state(OTS) polariton,is proposed to be realized by sandwiching a quantum well(QW) between a gold layer and a distributed Bragg reflector(DBR).It is shown that OTS polaritons can be generated from the strong couplings between the QW excitons and the free OTSs.In addition,if a second gold layer is introduced into the bottom of the DBR,two independent free OTSs can interact strongly with the QW excitons to produce extra OTS polaritons.
基金Project supported by the National Natural Science Foundation of China(Grant No.11105002)the Open-end Fund of State Key Laboratory of Structural Analysis for Industrial Equipment,China(Grant No.GZ1215)+1 种基金the Natural Science Foundation for University in Anhui Province of China(Grant No.KJ2013A106)the Doctoral Scientific Research Funds of Anhui University of Science and Technology,China
文摘We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.
基金supported by the National Natural Science Foundation of China (Grant Nos 10434020,10821062 and 10804004)the State Key Development Program for Basic Research of China (Grant Nos 2007CB307001 and 2009CB930504)the Research Fund for the Doctoral Program of Higher Education of China (Grant No 200800011023)
文摘Long-range surface plasmon polariton (LRSPP) modes in an asymmetrical system, in which the thin metal film is sandwiched between a semi-infinite substrate and a high permittivity polymer film with a finite thickness, are theoret~ ically calculated and analyzed. Due to the high permittivity of the polymer film, at proper polymer film thicknesses, the index-matching condition of the dielectrics at both sides of the metal can be satisfied for supporting LRSPP modes, and the electromagnetic field above the metal can be localized well. It is found that these LRSPP modes have both long propagation lengths and subwavelength mode expansion above the metal at the optimal polymer film thickncsses. Furthermore, the requirements on the refractive index and the thickness of the polymer film to support LRSPP modes at the optimal thicknesses are found to be not critical.
基金Project supported partly by PhD Progress Foundation of Higher Education Institutions of China (Grant No 20040126003) and the Natural Science Foundation of Inner Mongol of China (Grant No 200408020101).
文摘In this paper the bulk exciton polaritons in ternary mixed crystals (TMCs) are investigated in the Born-Huang approximation. The numerical results of the polariton frequencies as functions of the wave-vector and the compositions for ternary mixed crystals AlxGa1-xAs, CdxZn1-xSe, and AlxGa1-xN are obtained and discussed. The new dispersion characteristics for exciton-polaritons in TMC systems are found in comparison with binary crystals. The splitting of the two branches of exciton-polariton frequencies varies nonlinearly with the composition of TMCs and has a minimum in the long-wavelength range.
基金supported by National Natural Science Foundation of China(No.11105002)Doctoral Scientific Research Fund of AUST(No.2010yb011)ITER Domestic Matching Item of China(No.GB105003)
文摘The plasma parameters of planar-type surface-wave plasmas (SWPs) are diagnosed based on the resonant excitation of surface plasmon polaritons (SPPs). The plasma parameter distributions are obtained by changing the discharge conditions of gas pressure and incident power. The measured experimental results show that the plasma near the heating layer is excited by surface waves of SPPs while the plasma located downstream originates from diffusion Moreover, the influence of high-frequency oscillations plays a significant role in producing the proposed SWPs with bi-Maxwellian electron energy distributions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11105002 and 61170172)the Natural Science Foundation of Anhui Province,China(Grant Nos.1408085QA16 and 1408085ME101)+1 种基金the China Postdoctoral Science Foundation(Grant No.2014M551788)the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology(HUST),China(Grant No.GZ1301)
文摘Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air.The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes.The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons.Moreover,for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave,the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas,frequencies of pulsed modulator,duty cycles of pulsed microwave,peak values of input microwave power,and even by using different materials of dielectric tubes.In addition,the emission spectrum,the plume temperature,and other plasma parameters are measured,which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62005022, 12004052, and 62175018)the Fund from Jilin Provincial Key Laboratory of Ultrafast and Extreme Ultraviolet Optics (Grant No. YDZJ202102CXJD028)+2 种基金Department of Science and Technology of the Jilin Province, China (Grant Nos. 20200201268JC and 20200401052GX)the “111” Project of China (Grant No. D17017)the Fund from the Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology。
文摘Explicit visualization of different components of surface plasmon polaritons(SPPs) propagating at dielectric/metal interfaces is crucial in offering chances for the detailed design and control of the functionalities of plasmonic nanodevices in the future. Here, we reported independent imaging of the vertical and horizontal components of SPPs launched from a rectangular trench in the gold film by a 400-nm laser-assisted near-infrared(NIR) femtosecond laser time-resolved photoemission electron microscopy(TR-PEEM). The experiments demonstrate that distinct imaging of different components of SPPs field can be easily achieved by introducing the 400-nm laser. It can circumvent the risk of sample damage and information loss of excited SPPs field that is generally confronted in the usual NIR laser TR-PEEM scheme. The underlying mechanism for realizing distinct imaging of different components of the SPPs field with two-color PEEM is revealed via measuring the double logarithmic dependence of photoemission yield with the 800-nm and 400-nm pulse powers of different polarizations. Moreover, it is found that the PEEM image quality of the vertical and horizontal components of the SPPs field is nearly independent of the 400-nm pulse polarization. These results pave a way for SPPs-based applications and offer a possible solution for drawing a space-time field of SPPs in three dimensions.
基金the National Natural Science Foundation of China(Grant No.11764006).
文摘Resonance cavity is a basic element in optics,which has wide applications in optical devices.Coupled cavities(CCs)designed in metal-insulator-metal(MIM)bus waveguide are investigated through the finite difference time domain method and coupled-mode theory.In the CCs,the resonant modes of the surface plasmon polaritons(SPPs)split with the thickness decreasing of the middle baffle.Through the coupled-mode theory analysis,it is found that the phase differences introduced in opposite and positive couplings between two cavities lead to mode splitting.The resonant wavelength of positive coupling mode can be tuned in a large range(about 644 nm)through adjusting the coupling strength,which is quite different from the classical adjustment of the optical path in a single cavity.Based on the resonances of the CCs in the MIM waveguide,more compact devices can be designed to manipulate SPPs propagation.A device is designed to realize flexible multiple-wavelength SPPs routing.The coupling in CC structures can be applied to the design of easy-integrated laser cavities,filters,multiple-wavelength management devices in SPPs circuits,nanosensors,etc.
基金This work was financially supported by the National Natural Science Foundation of China (NSFC) (61675169, 61377055 and 11634010), the National Key R&D Program of China (2017YFA0303800), and the Fundamental Research Funds for the Central Universities (3102017zy021, 3102017HQZZ 022).
文摘We present a detailed analysis on mode evolution of gratingcoupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guidedwave theory. The eigenvalue equations for SPPs modes are discussed, revealing that cylindrical metal waveguides only support TM01 and HEm1 surface modes. During propagation on the metal tip, the gratingcoupled SPPs are converted to HE31, HE21, HE11 and TM01 successively, and these modes are sequentially cut off except TM01. The TM01 mode further propagates with drastically increasing effective mode index and is converted to localized surface plasmons (LSPs) at the tip apex, which is responsible for plasmonic nanofocusing. The gapmode plasmons can be excited with the focusing TM01 mode by approaching a metal substrate to the tip apex, resulting in further enhanced electric field and reduced size of the plasmonic focus.
文摘A novel leaky-wave antenna(LWA)utilizing spoof surface plasmon polaritons(SSPPs)excitation is proposed with continuous scanning range from endfire to forward.The designed transmission line unit supports two SSPPS modes,of which the 2nd order mode is applied in the design.A novel strategy has been devised to excite the spatial radiation of the-1st order harmonics by arranging periodic counter changed sinusoidal structures on both sides of the SSPPs transmission line.Both full-wave simulation and measurement results show that the proposed LWA presents wide scanning angle from endfire to forward.In the frequency range from 4 GHz to 10 GHz,LWAs achieve scanning from 90°to+20°,covering the entire backward quadrant continuously.