期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
ANISOTROPIC PLASTIC STRESS FIELDS AT A SLOWLY PROPAGATING CRACK TIP
1
作者 林拜松 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第8期759-765,共7页
Under the condition that any perfeetly plastic stress components at a crack tip are nothing but the Junctions of 0 only, making use of equilibriumequations,Hill ani.sutropic yield condition and unloading stress-strain... Under the condition that any perfeetly plastic stress components at a crack tip are nothing but the Junctions of 0 only, making use of equilibriumequations,Hill ani.sutropic yield condition and unloading stress-strain relations, in this paper, we derive the general analytical expressions of anisotropic plastiestress Jields at the slowly steadyhe slowly steady propagatin tips of plane and anti-phane strain,Applying these general analytical expressions to the concrete cracks the attchvtical expressions of anisotropie plastic stress fields at the slowly steady propagating tips of Motle I and Motle III cracks are obtained. For the isolropic plastic material, the anisotropic plastic stress fields at a slowly propagating crack tip become the perfeeby plastic mress fields 展开更多
关键词 ANISOTROPIC plastic STRESS FIELDS AT A SLOWLY PROPAGATING CRACK TIP
下载PDF
Dendritic nanoarchitecture imparts ZSM-5 zeolite with enhanced adsorption and catalytic performance in energy applications 被引量:1
2
作者 María del Mar Alonso-Doncel Cristina Ochoa-Hernández +5 位作者 Gema Gómez-Pozuelo Adriana Oliveira JoséGonzález-Aguilar ángel Peral Raúl Sanz David P.Serrano 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期77-88,I0003,共13页
The development of zeolites possessing dendritic features represents a great opportunity for the design of novel materials with applications in a large variety of fields and,in particular,in the energy sector to affor... The development of zeolites possessing dendritic features represents a great opportunity for the design of novel materials with applications in a large variety of fields and,in particular,in the energy sector to afford its transition towards a low carbon system.In the current work,ZSM-5 zeolite showing a dendritic3D nanoarchitecture has been synthesized by the functionalization of protozeolitic nanounits with an amphiphilic organosilane,which provokes the branched aggregative growth of zeolite embryos.Dendritic ZSM-5 exhibits outstanding accessibility arising from a highly interconnected network of radially-oriented mesopores(3-10 nm)and large cavities(20-80 nm),which add to the zeolitic micropores,thus showing a well-defined trimodal pore size distribution.These singular features provide dendritic ZSM-5 with sharply enhanced performance in comparison with nano-and hierarchical reference materials when tested in a number of energy related applications,such as VOCs(toluene)adsorption(improved capacity),plastics(low-density polyethylene)catalytic cracking(boosted activity)and hydrogen production by methane catalytic decomposition(higher activity and deactivation resistance). 展开更多
关键词 Dendritic ZSM-5 VOCs adsorption plastics cracking Methane decomposition Hydrogen production
下载PDF
Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys 被引量:2
3
作者 A.Albedah B.Bachir Bouiadjra +1 位作者 S.M.A.K.Mohammed F.Benyahia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第1期83-90,共8页
The effect of single overload on the fatigue crack growth in 2024-T3 and 7075-T6 Al alloys was analyzed.Fatigue tests under constantamplitude loading with overload peak were carried out on V-notched specimens.Fractogr... The effect of single overload on the fatigue crack growth in 2024-T3 and 7075-T6 Al alloys was analyzed.Fatigue tests under constantamplitude loading with overload peak were carried out on V-notched specimens.Fractographic analysis was used as a principal approach to explain the crack growth retardation due to the overload.Scanning electron microscopy(SEM)analyses were conducted on the fractured surface of failed specimens to study the retardation effect.The obtained results show that the overload application generates a plastic zone in both aluminum alloys.The generated plastic zone is three times larger in the case of 2024-T3 compared to 7075-T6,and thus,a significant crack retardation was induced for 2024-T3.The retardation effect due to the overload for 2024-T3 and 7075-T6 lasted for about 10 mm and 1 mm,respectively,from the point of overload application. 展开更多
关键词 fatigue crack growth OVERLOAD RETARDATION FRACTOGRAPHY crack tip plasticity
下载PDF
Optimisation Method for Determination of Crack Tip Position Based on Gauss-Newton Iterative Technique 被引量:1
4
作者 Bing Yang Zhanjiang Wei +5 位作者 Zhen Liao Shuwei Zhou Shoune Xiao Tao Zhu Guangwu Yang Mingmeng Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期196-207,共12页
In the digital image correlation research of fatigue crack growth rate,the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor,thereby affecting the life predic... In the digital image correlation research of fatigue crack growth rate,the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor,thereby affecting the life prediction.This paper proposes a Gauss-Newton iteration method for solving the crack tip position.The conventional linear fitting method provides an iterative initial solution for this method,and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix.A noise-added artificial displacement field is used to verify the feasibility of the method,which shows that all parameters can be solved with satisfactory results.The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result,and the relative error between the two is only−0.621%;The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip,and the maximum relative error with the test plastic zone area is−11.29%.The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%.The crack tip coordinates,stress intensity factors,and plastic zone contour changes in the loading and unloading phases are explored.The results show that the crack tip change during the loading process is faster than the change during the unloading process;the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process;under the same load,the theoretical plastic zone during the unloading process is higher than that during the loading process. 展开更多
关键词 Crack tip location Crack tip plastic zone Stress intensity factor Gauss-Newton iterative method Digital image correlation
下载PDF
A model of crack based on dislocations in smectic A liquid crystals
5
作者 范天佑 唐志毅 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期369-372,共4页
A plastic crack model for smectic A liquid crystals under longitudinal shear is suggested. The solution of the screw dislocation in smectic A is the key to the correct result that we obtained by overcoming a longstand... A plastic crack model for smectic A liquid crystals under longitudinal shear is suggested. The solution of the screw dislocation in smectic A is the key to the correct result that we obtained by overcoming a longstanding puzzle. We further use the dislocation pile-up principle and the singular integral equation method to construct the solution of the crack in the phase. From the solution, we can determine the size of the plastic zone at the crack tip and the crack tip opening (tearing) displacement, which are the parameters relevant to the local stability/instability of materials. Our results may be useful for developing soft-matter mechanics. 展开更多
关键词 smectic A screw dislocation dislocation pile-up plastic crack local instability
下载PDF
A new method to predict fatigue crack growth rate of materials based on average cyclic plasticity strain damage accumulation 被引量:10
6
作者 Chen Long Cai Lixun Yao Di 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第1期130-135,共6页
By introducing a fatigue blunting factor, the cyclic elasto-plastic Hutchinson-Rice-Rosengren (HRR) field near the crack tip under the cyclic loading is modified. And, an average damage per loading-cycle in the cycl... By introducing a fatigue blunting factor, the cyclic elasto-plastic Hutchinson-Rice-Rosengren (HRR) field near the crack tip under the cyclic loading is modified. And, an average damage per loading-cycle in the cyclic plastic deformation region is defined due to Manson-Coffin law. Then, according to the linear damage accumulation theory-Miner law, a new model for predicting the fatigue crack growth (FCG) of the opening mode crack based on the low cycle fatigue (LCF) damage is set up. The step length of crack propagation is assumed to be the size of cyclic plastic zone. It is clear that every parameter of the new model has clearly physical meaning which does not need any human debugging. Based on the LCF test data, the FCG predictions given by the new model are consistent with the FCG test results of Cr2Ni2MoV and X12CrMoWVNbN 10-1-1. What's more, referring to the relative researches, the good predictability of the new model is also proved on six kinds of materials. 展开更多
关键词 Cyclic elasto-plastic HRR field Cyclic plasticity strain damage Fatigue crack growth Low cycle fatigue Miner linear damage accumulation
原文传递
Assessment of Elasticity,Plasticity and Resistance to Machining-induced Damage of Porous Pre-sintered Zirconia Using Nanoindentation Techniques
7
作者 Abdur-Rasheed Alao Ling Yin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第5期402-410,共9页
Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentat... Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentation techniques and the Sakai's series elastic and plastic deformation model to extract the resistance to plastic deformation from the plane strain modulus and the contact hardness for presintered zirconia. The modulus and the resistance to plasticity were used to calculate the relative amount of elasticity and plasticity. The fracture energy and the normalized indentation absorbed energy were used to deconvolute the resistance to machining-induced cracking based on the Sakai-Nowak model. All properties were extracted at a 10 mN peak load and loading rates of 0.1-2 mN/s to determine the loading rate effects on these properties. We found that the resistance to plasticity and the resistance to machining-induced cracking were independent of the loading rate (ANOVA, p 〉 0.05). The elastic and plastic displacements depended on the loading rate through power laws. This loading rate-dependent deformation behaviour was explained by the maximum shear stress generated underneath the indenter and the indentation energy. The plastic deformation components and the indentation absorbed energy at all loading rates were higher than the elastic deformation components and the elastic strain energy, respectively. Finally, we established the linkage among the pore structure, indentation behaviour and machinability of pre-sintered zirconia. 展开更多
关键词 Elastic/plastic deformation Loading rate Nanoindentation Pre-sintered zirconia Resistance to machining-induced cracking Resistance to plasticity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部