The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box...The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box steel structures and no damager to the static mechanical properties of the used materials, is dealt with under the guarantee of strength, rigidity, and stability. A new idea of elastic--plastic controlling design, which is mainly based on the elastic-plastic theory and experi- mental results and is different from the current design which is mainly based handbooks and design- er' s experience, is established. That is: the loading time and its effect on loaded structures are con- sidered, and the potential strength in used matcrials is fully utilized through the controlling of struc- tural strains in design. By the using of this design method, the weight and cost of box structures will be reduced in large amount.展开更多
Today, the time-to-market for plastic products ar e getting shorter, thus the lead-time for making the injection mould is decreasin g. There is potential in timesavings in the mould design stage because the design pro...Today, the time-to-market for plastic products ar e getting shorter, thus the lead-time for making the injection mould is decreasin g. There is potential in timesavings in the mould design stage because the design process that is repeatable for every mould design can be standardized. T he preliminary work of any final plastic injection mould design is to always pro vide an initial design of the mould assembly for product designers (customers) p rior to receiving the final product CAD data. Traditionally and even up till no w, this initial design is always created using 2D CAD packages. The information used for the initial design is based on the technical discussion checklist, in which most mould makers have their own standards. This checklist is also being used as a quotation since the most basic information of the mould in the particu lar project is being recorded in it. The basic information in this checklist in cludes the number of cavities, the type of mould base to be used, the moulding m achine to be used for the moulding, the type of gating system, the type of resin material used and its shrinkage value etc. Information on special requirements such as the number of sliders or lifters to be used is also listed in the check list. At this stage, there is still no information on the cooling and ejection design since they are greatly dependent on the final product CAD data. This res earch focuses on the methodology of providing the initial design in 3D solid bas ed on the technical discussion checklist, which takes the role of the overall st andard template since every sub-design has its own standard template. An examp le of a sub-design that has its own standard template is the cavity layout desi gn. The cavity layout for plastic injection moulds can be designed by controlli ng the geometrical parameters using a standardization template. The standardiza tion template for the cavity layout design consists of configurations for the po ssible layouts. Each configuration of the layout design has its own layout desi gn table of all the geometrical parameters. This standardization template is pr e-defined in the layout design level of the mould assembly design. This ensure s that the required configuration can be loaded into the mould assembly design v ery quickly without having the need to redesign the layout. This makes it usefu l for technical discussions between the product designers and mould designers pr ior to the manufacture of the mould. Changes can be made to the 3D cavity layou t design immediately during the discussions thus the savings in time and avo idance of miscommunications.展开更多
The improvement of machining behavior of prehardened-mould steel for plastic is realized by using computer-aided composition design in this work. The results showed that the matrix composition of large sectional preha...The improvement of machining behavior of prehardened-mould steel for plastic is realized by using computer-aided composition design in this work. The results showed that the matrix composition of large sectional prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the control of composition aided by Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition the modification of calcium is optimized in the light of composition design.展开更多
This paper explains the development of a culturally inclusive ubiquitous M-Learning platform(“Mobile Academy”)with an AI-based adaptive user interface.The rationale and need for this research and development are jus...This paper explains the development of a culturally inclusive ubiquitous M-Learning platform(“Mobile Academy”)with an AI-based adaptive user interface.The rationale and need for this research and development are justified by the continuing widespread adoption of the Internet and Internet enabled devices,especially smartphones.The M-learning platform was designed from the onset for the global traveller.The characteristics and limitations of the application are also discussed.The Mobile Academy,proof of concept prototype,was created to facilitate teaching and learning on the move or in environments where the use of a desktop computer is inconvenient or simply impossible.The platform’s primary objective was cross-cultural usability through the use of a combination of AI and plasticity of user interface design techniques.The usability evaluation plan was comprehensive and the results obtained were studied in detail.This also included consideration of the results of the SVM(Support Vector Machine)classifiers’performance and cross-device evaluation.The AI-based adaptive interface prototype has been tested and evaluated to show its merits and capabilities in terms of its usability,inclusivity and effectiveness of the interface.From the results,it was concluded that such a culture independent application was also affordable.展开更多
The thermo elasto-plastic optimum design of ceramic-metal functionally graded materials (FGMs)was investigated in this paper. The inelastic properties were first evaluated using micromechanical approaches, then an ela...The thermo elasto-plastic optimum design of ceramic-metal functionally graded materials (FGMs)was investigated in this paper. The inelastic properties were first evaluated using micromechanical approaches, then an elasto-plastic finite element model was used to calculate the thermal stress in the material . The effects of micromechanical approaches, plasticity and graded interlayer thickness on the thermal stress relaxation characteristics and stress distributions were studied. The results show that: (1) the macro elas-to-plastic response given by the mean-field micromechanics and self-consistent micromechanics is nearly the same but the response given by the rule of mixture is different; (2)the thermo elasto-plastic behavior must be considered to realistically evaluate stress reduction, and the elasto-plastic optimum design can get helpful information to determine the graded interlayer thicknesses;and(3) to optimize the microstructure of the graded material achieves reductions in critical stress components and rational stress distributions.展开更多
Organic sheets made out of fiber-reinforced thermoplastics are able to make a crucial contribution to increase the lightweight potential of a design. They show high specific strength- and stiffness properties, good da...Organic sheets made out of fiber-reinforced thermoplastics are able to make a crucial contribution to increase the lightweight potential of a design. They show high specific strength- and stiffness properties, good damping characteristics and recycling capabilities, while being able to show a higher energy absorption capacity than comparable metal constructions. Nowadays, multi-material designs are an established way in the automotive industry to combine the benefits of metal and fiber-reinforced plastics. Currently used technologies for the joining of organic sheets and metals in large-scale production are mechanical joining technologies and adhesive technologies. Both techniques require large overlapping areas that are not required in the design of the part. Additionally, mechanical joining is usually combined with “fiber-destroying” pre-drilling and punching processes. This will disturb the force flux at the joining location by causing unwanted fiber- and inter-fiber failure and inducing critical notch stresses. Therefore, the multi-material design with fiber-reinforced thermoplastics and metals needs optimized joining techniques that don’t interrupt the force flux, so that higher loads can be induced and the full benefit of the FRP material can be used. This article focuses on the characterization of a new joining technology, based on the Cold Metal Transfer (CMT) welding process that allows joining of organic sheets and metals in a load path optimized way, with short cycle times. This is achieved by redirecting the fibers around the joining area by the insertion of a thin metal pin. The path of the fibers will be similar to paths of fibers inside structures found in nature, e.g. a knothole inside of a tree. As a result of the bionic fiber design of the joint, high joining strengths can be achieved. The increase of the joint strength compared to blind riveting was performed and proven with stainless steel and orthotropic reinforced composites in shear-tests based on the DIN EN ISO 14273. Every specimen joined with the new CMT Pin joining technology showed a higher strength than specimens joined with one blind rivet. Specimens joined with two or three pin rows show a higher strength than specimens joined with two blind rivets.展开更多
Bumps and other types of dynamic failure have been a persistent, worldwide problem in the underground coal mining industry, spanning decades.For example, in just five states in the U.S.from 1983 to 2014,there were 388...Bumps and other types of dynamic failure have been a persistent, worldwide problem in the underground coal mining industry, spanning decades.For example, in just five states in the U.S.from 1983 to 2014,there were 388 reportable bumps.Despite significant advances in mine design tools and mining practices,these events continue to occur.Many conditions have been associated with bump potential, such as the presence of stiff units in the local geology.The effect of a stiff sandstone unit on the potential for coal bumps depends on the location of the stiff unit in the stratigraphic column, the relative stiffness and strength of other structural members, and stress concentrations caused by mining.This study describes the results of a robust design to consider the impact of different lithologic risk factors impacting dynamic failure risk.Because the inherent variability of stratigraphic characteristics in sedimentary formations,such as thickness, engineering material properties, and location, is significant and the number of influential parameters in determining a parametric study is large, it is impractical to consider every simulation case by varying each parameter individually.Therefore, to save time and honor the statistical distributions of the parameters, it is necessary to develop a robust design to collect sufficient sample data and develop a statistical analysis method to draw accurate conclusions from the collected data.In this study,orthogonal arrays, which were developed using the robust design, are used to define the combination of the(a) thickness of a stiff sandstone inserted on the top and bottom of a coal seam in a massive shale mine roof and floor,(b) location of the stiff sandstone inserted on the top and bottom of the coal seam,and(c) material properties of the stiff sandstone and contacts as interfaces using the 3-dimensional numerical model, FLAC3D.After completion of the numerical experiments, statistical and multivariate analysis are performed using the calculated results from the orthogonal arrays to analyze the effect of these variables.As a consequence, the impact of each of the parameters on the potential for bumps is quantitatively classified in terms of a normalized intensity of plastic dissipated energy.By multiple regression, the intensity of plastic dissipated energy and migration of the risk from the roof to the floor via the pillars is predicted based on the value of the variables.The results demonstrate and suggest a possible capability to predict the bump potential in a given rock mass adjacent to the underground excavations and pillars.Assessing the risk of bumps is important to preventing fatalities and injuries resulting from bumps.展开更多
In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups o...In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.展开更多
文摘The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box steel structures and no damager to the static mechanical properties of the used materials, is dealt with under the guarantee of strength, rigidity, and stability. A new idea of elastic--plastic controlling design, which is mainly based on the elastic-plastic theory and experi- mental results and is different from the current design which is mainly based handbooks and design- er' s experience, is established. That is: the loading time and its effect on loaded structures are con- sidered, and the potential strength in used matcrials is fully utilized through the controlling of struc- tural strains in design. By the using of this design method, the weight and cost of box structures will be reduced in large amount.
文摘Today, the time-to-market for plastic products ar e getting shorter, thus the lead-time for making the injection mould is decreasin g. There is potential in timesavings in the mould design stage because the design process that is repeatable for every mould design can be standardized. T he preliminary work of any final plastic injection mould design is to always pro vide an initial design of the mould assembly for product designers (customers) p rior to receiving the final product CAD data. Traditionally and even up till no w, this initial design is always created using 2D CAD packages. The information used for the initial design is based on the technical discussion checklist, in which most mould makers have their own standards. This checklist is also being used as a quotation since the most basic information of the mould in the particu lar project is being recorded in it. The basic information in this checklist in cludes the number of cavities, the type of mould base to be used, the moulding m achine to be used for the moulding, the type of gating system, the type of resin material used and its shrinkage value etc. Information on special requirements such as the number of sliders or lifters to be used is also listed in the check list. At this stage, there is still no information on the cooling and ejection design since they are greatly dependent on the final product CAD data. This res earch focuses on the methodology of providing the initial design in 3D solid bas ed on the technical discussion checklist, which takes the role of the overall st andard template since every sub-design has its own standard template. An examp le of a sub-design that has its own standard template is the cavity layout desi gn. The cavity layout for plastic injection moulds can be designed by controlli ng the geometrical parameters using a standardization template. The standardiza tion template for the cavity layout design consists of configurations for the po ssible layouts. Each configuration of the layout design has its own layout desi gn table of all the geometrical parameters. This standardization template is pr e-defined in the layout design level of the mould assembly design. This ensure s that the required configuration can be loaded into the mould assembly design v ery quickly without having the need to redesign the layout. This makes it usefu l for technical discussions between the product designers and mould designers pr ior to the manufacture of the mould. Changes can be made to the 3D cavity layou t design immediately during the discussions thus the savings in time and avo idance of miscommunications.
文摘The improvement of machining behavior of prehardened-mould steel for plastic is realized by using computer-aided composition design in this work. The results showed that the matrix composition of large sectional prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the control of composition aided by Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition the modification of calcium is optimized in the light of composition design.
基金supported by the fund of Xiamen University Malaysia.
文摘This paper explains the development of a culturally inclusive ubiquitous M-Learning platform(“Mobile Academy”)with an AI-based adaptive user interface.The rationale and need for this research and development are justified by the continuing widespread adoption of the Internet and Internet enabled devices,especially smartphones.The M-learning platform was designed from the onset for the global traveller.The characteristics and limitations of the application are also discussed.The Mobile Academy,proof of concept prototype,was created to facilitate teaching and learning on the move or in environments where the use of a desktop computer is inconvenient or simply impossible.The platform’s primary objective was cross-cultural usability through the use of a combination of AI and plasticity of user interface design techniques.The usability evaluation plan was comprehensive and the results obtained were studied in detail.This also included consideration of the results of the SVM(Support Vector Machine)classifiers’performance and cross-device evaluation.The AI-based adaptive interface prototype has been tested and evaluated to show its merits and capabilities in terms of its usability,inclusivity and effectiveness of the interface.From the results,it was concluded that such a culture independent application was also affordable.
基金This work was supported by the National Science Foundation
文摘The thermo elasto-plastic optimum design of ceramic-metal functionally graded materials (FGMs)was investigated in this paper. The inelastic properties were first evaluated using micromechanical approaches, then an elasto-plastic finite element model was used to calculate the thermal stress in the material . The effects of micromechanical approaches, plasticity and graded interlayer thickness on the thermal stress relaxation characteristics and stress distributions were studied. The results show that: (1) the macro elas-to-plastic response given by the mean-field micromechanics and self-consistent micromechanics is nearly the same but the response given by the rule of mixture is different; (2)the thermo elasto-plastic behavior must be considered to realistically evaluate stress reduction, and the elasto-plastic optimum design can get helpful information to determine the graded interlayer thicknesses;and(3) to optimize the microstructure of the graded material achieves reductions in critical stress components and rational stress distributions.
文摘Organic sheets made out of fiber-reinforced thermoplastics are able to make a crucial contribution to increase the lightweight potential of a design. They show high specific strength- and stiffness properties, good damping characteristics and recycling capabilities, while being able to show a higher energy absorption capacity than comparable metal constructions. Nowadays, multi-material designs are an established way in the automotive industry to combine the benefits of metal and fiber-reinforced plastics. Currently used technologies for the joining of organic sheets and metals in large-scale production are mechanical joining technologies and adhesive technologies. Both techniques require large overlapping areas that are not required in the design of the part. Additionally, mechanical joining is usually combined with “fiber-destroying” pre-drilling and punching processes. This will disturb the force flux at the joining location by causing unwanted fiber- and inter-fiber failure and inducing critical notch stresses. Therefore, the multi-material design with fiber-reinforced thermoplastics and metals needs optimized joining techniques that don’t interrupt the force flux, so that higher loads can be induced and the full benefit of the FRP material can be used. This article focuses on the characterization of a new joining technology, based on the Cold Metal Transfer (CMT) welding process that allows joining of organic sheets and metals in a load path optimized way, with short cycle times. This is achieved by redirecting the fibers around the joining area by the insertion of a thin metal pin. The path of the fibers will be similar to paths of fibers inside structures found in nature, e.g. a knothole inside of a tree. As a result of the bionic fiber design of the joint, high joining strengths can be achieved. The increase of the joint strength compared to blind riveting was performed and proven with stainless steel and orthotropic reinforced composites in shear-tests based on the DIN EN ISO 14273. Every specimen joined with the new CMT Pin joining technology showed a higher strength than specimens joined with one blind rivet. Specimens joined with two or three pin rows show a higher strength than specimens joined with two blind rivets.
文摘Bumps and other types of dynamic failure have been a persistent, worldwide problem in the underground coal mining industry, spanning decades.For example, in just five states in the U.S.from 1983 to 2014,there were 388 reportable bumps.Despite significant advances in mine design tools and mining practices,these events continue to occur.Many conditions have been associated with bump potential, such as the presence of stiff units in the local geology.The effect of a stiff sandstone unit on the potential for coal bumps depends on the location of the stiff unit in the stratigraphic column, the relative stiffness and strength of other structural members, and stress concentrations caused by mining.This study describes the results of a robust design to consider the impact of different lithologic risk factors impacting dynamic failure risk.Because the inherent variability of stratigraphic characteristics in sedimentary formations,such as thickness, engineering material properties, and location, is significant and the number of influential parameters in determining a parametric study is large, it is impractical to consider every simulation case by varying each parameter individually.Therefore, to save time and honor the statistical distributions of the parameters, it is necessary to develop a robust design to collect sufficient sample data and develop a statistical analysis method to draw accurate conclusions from the collected data.In this study,orthogonal arrays, which were developed using the robust design, are used to define the combination of the(a) thickness of a stiff sandstone inserted on the top and bottom of a coal seam in a massive shale mine roof and floor,(b) location of the stiff sandstone inserted on the top and bottom of the coal seam,and(c) material properties of the stiff sandstone and contacts as interfaces using the 3-dimensional numerical model, FLAC3D.After completion of the numerical experiments, statistical and multivariate analysis are performed using the calculated results from the orthogonal arrays to analyze the effect of these variables.As a consequence, the impact of each of the parameters on the potential for bumps is quantitatively classified in terms of a normalized intensity of plastic dissipated energy.By multiple regression, the intensity of plastic dissipated energy and migration of the risk from the roof to the floor via the pillars is predicted based on the value of the variables.The results demonstrate and suggest a possible capability to predict the bump potential in a given rock mass adjacent to the underground excavations and pillars.Assessing the risk of bumps is important to preventing fatalities and injuries resulting from bumps.
基金Project(50304010) supported by the National Natural Science Foundation of China
文摘In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.