This paper proposes a new experimental method of quantitative plastic deformation analysis by means of the thermoplastic effect. The incremental plastic strain distribution for a single shear specimen was obtained by ...This paper proposes a new experimental method of quantitative plastic deformation analysis by means of the thermoplastic effect. The incremental plastic strain distribution for a single shear specimen was obtained by using this method.展开更多
Based on approximate theoretical analyses on a typical spherical cellcontaining a spherical rnicrovoid, the influences of matrix materials' microscopic scale on themacroscopic constitutive potential theory of poro...Based on approximate theoretical analyses on a typical spherical cellcontaining a spherical rnicrovoid, the influences of matrix materials' microscopic scale on themacroscopic constitutive potential theory of porous material and microvoid growth have beeninvestigated in detail. By assuming that the plastic: deformation behavior of matrix materialsfollows the strain gradient (SG) plastic theory involving the stretch and rotation gradients , theratio (λ = l/a) of the matrix materials' intrinsic characteristic length l to the micro-void radiusa is introduced into the plastic constitutive potential and the void growth law. The presentresults indicate that, when the radius a of microvoids is comparable with the intrinsiccharacteristic length l of the matrix materials, the influence of microscopic size effect on neitherthe constitutive potential nor the micro-void evolution predicted can be ignored. And when the voidradius a is much lager than the intrinsic characteristic length l of the matrix materials, thepresent model can retrogress automatically to the improved Gur-son model that takes into account thestrain hardening effect of matrix materials.展开更多
Detecting stress concentration, especially critical stress state leading to structure damage or failure, is one of the most important tasks of equipment diagnosis. Metal magnetic memory technique needs further researc...Detecting stress concentration, especially critical stress state leading to structure damage or failure, is one of the most important tasks of equipment diagnosis. Metal magnetic memory technique needs further research to evaluate stress concentration quantitatively due to ambiguous physical mechanism, though it has potential to detect early defects in ferromagnetic materials. Mild Q235 steel defective specimens in demagnetization state were loaded in tension up to visible necking, with magnetic memory signals measurement made at increasing stress levels. Magnetic signals varied greatly under first several loadings and subsequently tended to stability in the elastic region, which showed that the magnetization always approaches the anhysteretic magnetization curve and was explained by the theory of magnetomechanical effect. In the plastic stage, an abnormal wave occurred in the stress concentration zone and its height value was sensitive to plastic deformation levels and dependent on the distance between the probe and defect, in accordance with the simulation results based on the magnetic dipole model. Different magnetic signal characteristics in the elastic-plastic region indicate that the magnetic memory technique can identify macroyielding and early damage, which is of profound significance for ensuring safe operation of equipment in service.展开更多
To provide data for improved modelling of the behaviour of steel components in a simultaneous forming and quenching process, the effects of plastic deformation and stresses on dilatation during the martensitic transfo...To provide data for improved modelling of the behaviour of steel components in a simultaneous forming and quenching process, the effects of plastic deformation and stresses on dilatation during the martensitic transformation in a B-bearing steel were investigated. It was found that plastic deformation of austenite at high temperatures enhances ferrite formation significantly, and consequently, the dilatation decreases markedly even at a cooling rate of 280'C/s. The created ferritic-martensitic microstructure possesses clearly lower hardness and strength than the martensitic structure. Elastic stresses cause the preferred orientation in martensite to be formed so that diametric dilatation can increase by nearly 200% under axial compression.展开更多
The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-ener...The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.展开更多
The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The r...The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The results are compared with those using differential scheme. It is shown that the material properties derived from the present model normally are larger than those obtained by differential scheme for foam plastics with identical porosity. The differences in shear moduli and Young's moduli obtained by the two methods are small but they are larger for bulk moduli of incompressible matrix and Poisson's ratios. The Young's moduli of high density foam plastics derived by the present model agree better with experimental ones.展开更多
An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to...An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31.The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared.It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects:the softening effect which reduces the flow resistance and improves the plasticity,and the hardening effect which decreases the formability.When a lower amplitude or vibration energy is applied to the tensile sample,the softening effect dominates,leading to a decrease of AZ31 deformation resistance with an increase of formability.Under the application of a high-vibrating amplitude,the hardening effect dominates,resulting in the decline of plasticity and brittle fracture of the samples.展开更多
In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four me...In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam.The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity.展开更多
An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the in...An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves.展开更多
A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approache...A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approaches. The simplified model can catch the most essential features of elastic-plastic response of beams; in particular, it demonstrates the effect of elastic deformation on the distribution of bending moment and energy dissipation, and provides valuable quatitative results.展开更多
Recent studies have shown that the size of microvoids has a significant effect on the void growth rate.The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization i...Recent studies have shown that the size of microvoids has a significant effect on the void growth rate.The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization in ductile materials.We have used the extended Gurson's dilatational plasticity theory,which accounts for the void size effect,to study the plastic flow localization in porous solids with long cylindrical voids.The localization model of Rice is adopted,in which the material inside the band may display a different response from that outside the band at the incipient plastic flow localization.The present study shows that it has little effect on the shear band angle.展开更多
In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic ...In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic effect of repeated electroacupuncture stimulation at bilateral Zusanfi (ST36) and Yanglingquan (GB34). In addition, associated synaptic changes in neurons in the paraventricular nucleus of the hypothalamus were examined. Results indicate that the thermal pain threshold (paw withdrawal latency) was significantly increased in rats subjected to 2-week electroacupuncture intervention compared with 2-day electroacupuncture, but the analgesic effect was weakened remarkably in ovariectomized rats with chronic constrictive injury. 2-week electroacupuncture intervention substantially reversed the chronic constrictive injury-induced increase in the synaptic cleft width and thinning of the postsynaptic density. These findings indicate that repeated electroacupuncture at bilateral Zusanfi and Yanglingquan has a cumulative analgesic effect and can effectively relieve chronic neuropathic pain by remodeling the synaptic structure of the hypothalamic paraventricular nucleus.展开更多
The paper concerns the issue of size law,localized deformation and dilation or compaction due to shear localization. It is assumed that the shear localization initiates at the peak shear stress in the form of single s...The paper concerns the issue of size law,localized deformation and dilation or compaction due to shear localization. It is assumed that the shear localization initiates at the peak shear stress in the form of single shear band,and based on gradient-dependent plasticity,an analytical solution on size effect or snap-back is obtained. The results show that the post peak response becomes steeper and even exhibits snap-back with increasing of length. For small specimen,the relative shear displacement when specimen failure occurs is lower than that of larger specimen and the shear stress-relative displacement curve becomes steeper. The theoretical solution on non-uniformity of strains in shear band is obtained and evolution of the relative shear displacement is represented. By resorting to the linear relation between local plastic shear strain and local plastic volumetric strain,the dilation and compaction within shear band are analyzed. Relation between apparent shear strain and apparent normal strain and relation between shear displacement and vertical displacement are established.展开更多
该文探究了酸枣仁皂苷A(Jujuboside A,JuA)对抑郁模型小鼠行为及神经突触可塑性相关蛋白表达的作用。通过悬尾实验、强迫游泳实验、旷场实验、Morris水迷宫实验评价小鼠的抑郁状态,免疫组织化学染色法检测小鼠海马组织中脑源性神经营养...该文探究了酸枣仁皂苷A(Jujuboside A,JuA)对抑郁模型小鼠行为及神经突触可塑性相关蛋白表达的作用。通过悬尾实验、强迫游泳实验、旷场实验、Morris水迷宫实验评价小鼠的抑郁状态,免疫组织化学染色法检测小鼠海马组织中脑源性神经营养因子(Brain Derived Neurotrophic Factor,BDNF)的表达水平,Western blot实验检测小鼠海马组织酪氨酸激酶受体B(Tyrosine Kinase Receptor B,TrkB)、cAMP反应元件结合蛋白(cAMP Responsive Element Binding,CREB)、突触后密度蛋白95(Postsynaptic Density Protein 95,PSD95)、自噬效应蛋白Beclin1(Autophagy Effector Protein Beclin1,Beclin1)的表达水平。结果表明,JuA显著改善抑郁模型小鼠的抑郁状态。同时,JuA作用后海马组织BDNF、TrkB、CREB、PSD95、Beclin1的表达水平较模型组分别上调了190.23%、137.24%、76.29%、169.32%、82.53%。综上所述,JuA对抑郁模型小鼠具有显著的抗抑郁作用,并能明上调BDNF、TrkB、CREB、PSD95、Beclin1等神经突触可塑性相关蛋白的表达。实验结果为JuA在抑郁症临床治疗方面的应用提供理论依据,并为探究抑郁症药物治疗靶点提供参考。展开更多
基金Sponsored by the National Natural Science Foundation of ChinaProject supported by Astronautics Foundation of China(Project number QH9319)
文摘This paper proposes a new experimental method of quantitative plastic deformation analysis by means of the thermoplastic effect. The incremental plastic strain distribution for a single shear specimen was obtained by using this method.
基金the National Natural Science Foundation of China (No.A10102006)
文摘Based on approximate theoretical analyses on a typical spherical cellcontaining a spherical rnicrovoid, the influences of matrix materials' microscopic scale on themacroscopic constitutive potential theory of porous material and microvoid growth have beeninvestigated in detail. By assuming that the plastic: deformation behavior of matrix materialsfollows the strain gradient (SG) plastic theory involving the stretch and rotation gradients , theratio (λ = l/a) of the matrix materials' intrinsic characteristic length l to the micro-void radiusa is introduced into the plastic constitutive potential and the void growth law. The presentresults indicate that, when the radius a of microvoids is comparable with the intrinsiccharacteristic length l of the matrix materials, the influence of microscopic size effect on neitherthe constitutive potential nor the micro-void evolution predicted can be ignored. And when the voidradius a is much lager than the intrinsic characteristic length l of the matrix materials, thepresent model can retrogress automatically to the improved Gur-son model that takes into account thestrain hardening effect of matrix materials.
基金supported by National Natural Science Foundation of China(Grant No. 10772061)Heilongjiang Provincial Natural Science Foundation of China(Grant No. A200907)Specialized Research Fundfor the Doctoral Program of Higher Education of China(Grant No.20092322120001)
文摘Detecting stress concentration, especially critical stress state leading to structure damage or failure, is one of the most important tasks of equipment diagnosis. Metal magnetic memory technique needs further research to evaluate stress concentration quantitatively due to ambiguous physical mechanism, though it has potential to detect early defects in ferromagnetic materials. Mild Q235 steel defective specimens in demagnetization state were loaded in tension up to visible necking, with magnetic memory signals measurement made at increasing stress levels. Magnetic signals varied greatly under first several loadings and subsequently tended to stability in the elastic region, which showed that the magnetization always approaches the anhysteretic magnetization curve and was explained by the theory of magnetomechanical effect. In the plastic stage, an abnormal wave occurred in the stress concentration zone and its height value was sensitive to plastic deformation levels and dependent on the distance between the probe and defect, in accordance with the simulation results based on the magnetic dipole model. Different magnetic signal characteristics in the elastic-plastic region indicate that the magnetic memory technique can identify macroyielding and early damage, which is of profound significance for ensuring safe operation of equipment in service.
文摘To provide data for improved modelling of the behaviour of steel components in a simultaneous forming and quenching process, the effects of plastic deformation and stresses on dilatation during the martensitic transformation in a B-bearing steel were investigated. It was found that plastic deformation of austenite at high temperatures enhances ferrite formation significantly, and consequently, the dilatation decreases markedly even at a cooling rate of 280'C/s. The created ferritic-martensitic microstructure possesses clearly lower hardness and strength than the martensitic structure. Elastic stresses cause the preferred orientation in martensite to be formed so that diametric dilatation can increase by nearly 200% under axial compression.
基金supported by the National Natural Science Foundation of China (10772096)
文摘The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.
基金Supported by the National Natural Science Foundation of China and Laboratory for Nonlinear Mechanics of Continuous Media,Institute of Mechanics,Chinese Academy of Sciences.
文摘The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The results are compared with those using differential scheme. It is shown that the material properties derived from the present model normally are larger than those obtained by differential scheme for foam plastics with identical porosity. The differences in shear moduli and Young's moduli obtained by the two methods are small but they are larger for bulk moduli of incompressible matrix and Poisson's ratios. The Young's moduli of high density foam plastics derived by the present model agree better with experimental ones.
基金supported by the Natural Science Foundation Project of Chongqing Science and Technology Commission,China (No.2009BB4186)
文摘An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31.The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared.It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects:the softening effect which reduces the flow resistance and improves the plasticity,and the hardening effect which decreases the formability.When a lower amplitude or vibration energy is applied to the tensile sample,the softening effect dominates,leading to a decrease of AZ31 deformation resistance with an increase of formability.Under the application of a high-vibrating amplitude,the hardening effect dominates,resulting in the decline of plasticity and brittle fracture of the samples.
基金Supported by the National Key R&D Program of China under Grant No 2016YFA0401100the National Natural Science Foundation of China under Grant No 61575129the National High-Technology Research and Development Program of China under Grant No 2015AA021102
文摘In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam.The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity.
文摘An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves.
基金The project is supported by National Natural Science Foundation of China
文摘A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approaches. The simplified model can catch the most essential features of elastic-plastic response of beams; in particular, it demonstrates the effect of elastic deformation on the distribution of bending moment and energy dissipation, and provides valuable quatitative results.
基金The project supported by the National Natural Science Foundation of China (10121202) and Ministry of Education,China (20020003023 and Key Grant Project 0306)
文摘Recent studies have shown that the size of microvoids has a significant effect on the void growth rate.The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization in ductile materials.We have used the extended Gurson's dilatational plasticity theory,which accounts for the void size effect,to study the plastic flow localization in porous solids with long cylindrical voids.The localization model of Rice is adopted,in which the material inside the band may display a different response from that outside the band at the incipient plastic flow localization.The present study shows that it has little effect on the shear band angle.
基金supported by the National Natural Science Foundation of China,No.30472241,90709031 and 30973796the National Basic Research Program of China for Traditional Chinese Medicine Theory("973" Program),No.2007CB512505+1 种基金the Natural Foundation of Hainan Province(No.310054)a grant from the Health Department of Hainan Province(QiongWei 2010-45)
文摘In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic effect of repeated electroacupuncture stimulation at bilateral Zusanfi (ST36) and Yanglingquan (GB34). In addition, associated synaptic changes in neurons in the paraventricular nucleus of the hypothalamus were examined. Results indicate that the thermal pain threshold (paw withdrawal latency) was significantly increased in rats subjected to 2-week electroacupuncture intervention compared with 2-day electroacupuncture, but the analgesic effect was weakened remarkably in ovariectomized rats with chronic constrictive injury. 2-week electroacupuncture intervention substantially reversed the chronic constrictive injury-induced increase in the synaptic cleft width and thinning of the postsynaptic density. These findings indicate that repeated electroacupuncture at bilateral Zusanfi and Yanglingquan has a cumulative analgesic effect and can effectively relieve chronic neuropathic pain by remodeling the synaptic structure of the hypothalamic paraventricular nucleus.
基金Supported by the National Natural Science Foundation of China(50309004)。
文摘The paper concerns the issue of size law,localized deformation and dilation or compaction due to shear localization. It is assumed that the shear localization initiates at the peak shear stress in the form of single shear band,and based on gradient-dependent plasticity,an analytical solution on size effect or snap-back is obtained. The results show that the post peak response becomes steeper and even exhibits snap-back with increasing of length. For small specimen,the relative shear displacement when specimen failure occurs is lower than that of larger specimen and the shear stress-relative displacement curve becomes steeper. The theoretical solution on non-uniformity of strains in shear band is obtained and evolution of the relative shear displacement is represented. By resorting to the linear relation between local plastic shear strain and local plastic volumetric strain,the dilation and compaction within shear band are analyzed. Relation between apparent shear strain and apparent normal strain and relation between shear displacement and vertical displacement are established.
文摘该文探究了酸枣仁皂苷A(Jujuboside A,JuA)对抑郁模型小鼠行为及神经突触可塑性相关蛋白表达的作用。通过悬尾实验、强迫游泳实验、旷场实验、Morris水迷宫实验评价小鼠的抑郁状态,免疫组织化学染色法检测小鼠海马组织中脑源性神经营养因子(Brain Derived Neurotrophic Factor,BDNF)的表达水平,Western blot实验检测小鼠海马组织酪氨酸激酶受体B(Tyrosine Kinase Receptor B,TrkB)、cAMP反应元件结合蛋白(cAMP Responsive Element Binding,CREB)、突触后密度蛋白95(Postsynaptic Density Protein 95,PSD95)、自噬效应蛋白Beclin1(Autophagy Effector Protein Beclin1,Beclin1)的表达水平。结果表明,JuA显著改善抑郁模型小鼠的抑郁状态。同时,JuA作用后海马组织BDNF、TrkB、CREB、PSD95、Beclin1的表达水平较模型组分别上调了190.23%、137.24%、76.29%、169.32%、82.53%。综上所述,JuA对抑郁模型小鼠具有显著的抗抑郁作用,并能明上调BDNF、TrkB、CREB、PSD95、Beclin1等神经突触可塑性相关蛋白的表达。实验结果为JuA在抑郁症临床治疗方面的应用提供理论依据,并为探究抑郁症药物治疗靶点提供参考。