In this paper Liapunov's second method is used to analyze the plastic dynamic stability of a column under nonconservative forces. The column is in a viscous medium, and under the action of uniformly distributed ta...In this paper Liapunov's second method is used to analyze the plastic dynamic stability of a column under nonconservative forces. The column is in a viscous medium, and under the action of uniformly distributed tangential follower forces. The strain-rate effect on the stress-strain relation of materials is included in the analysis. A condition of stability is derived, and the critical buckling load is obtained. The strain-rate effect on the stability of the column is discussed.展开更多
The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional...The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.展开更多
At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage betw...At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage between saddles and main cables. This article presents the researches conducted on structure selection and behavior characteristics of middle pylon, interaction mechanism between main cables and saddles and their anti-slippage safety performance, elastic and plastic stability analysis and safety assessment of steel middle pylon, and fatigue design load and method for steel pylon of Taizhou Bridge. According to the research results, a longitudinal inverted Y shape steel middle pylon is used in design, effectively solving many technical difficulties, and this type of pylon has become a suitable middle pylon structural form for many three-ovlon two-soan susoension bridges.展开更多
Three kinds of high Co Ni secondary hardening steels with different Ni contents were studied. The nanoscale austenite layers formed at the interface of matensite laths were observed. Both observation and diffusion kin...Three kinds of high Co Ni secondary hardening steels with different Ni contents were studied. The nanoscale austenite layers formed at the interface of matensite laths were observed. Both observation and diffusion kinetic simulation results showed that both Ni and Co did not obtain enough time to get the equilibrium content in this system. The Ni content in austenite layers decreased significantly, and Co content increased slightly with the decrease of Ni content in overall composition. The austenite stability was estimated by Olson-Cohen model, in which both chemical and mechanical driving force could be calculated by equilibrium thermodynamic and Mohr's circle methods, respectively. Simulation and mechanical test results showed that The decrease of Ni content in austenite layers would cause the change of austenite stability and decrease the fracture toughness of the steels. When the Ni content in the overall composition was lower than 7 wt. %, the Ni content in y phase would be lower than 20 wt.%. And the simulation value of M; (stress induced critical martensite transformation temperature) would be up to 80 ℃, which was about 60℃ higher than room temperature. Based on the analysis, the Ni content in the overall composition of high Co Ni secondary hardening steels should be higher than 8 wt. % in order to obtain a good fracture toughness.展开更多
In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigat...In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigate its dynamic response and underlying deformation mechanism. Materials with different grain sizes were tested to understand the effect of grain size, thus grain boundary volume, on the mechanical prop-erties. Microstructures of various samples both before and after deformation were examined using elec-tron backscatter diffraction and transmission electron microscopy. The dislocation structure as well as deformation-induced twins were analyzed and correlated with the measured mechanical properties. Plastic stability during tension of the current high-entropy alloy (HEA), in particular, at dynamic strain rates, was discussed in lights of strain-rate sensitivity and work hardening rate. It was found that, under dynamic conditions, the strength and uniform ductility increased simultaneously as a result of the mas-sive formation of deformation twins. Specifically, an ultimate tensile strength of 734 MPa and uniform elongation of-63% are obtained at 2.3×10^3 s^-1, indicating that the alloy has great potential for energy absorption upon impact loading.展开更多
文摘In this paper Liapunov's second method is used to analyze the plastic dynamic stability of a column under nonconservative forces. The column is in a viscous medium, and under the action of uniformly distributed tangential follower forces. The strain-rate effect on the stress-strain relation of materials is included in the analysis. A condition of stability is derived, and the critical buckling load is obtained. The strain-rate effect on the stability of the column is discussed.
基金Project(51479097)supported by the National Natural Science Foundation of ChinaProject(2013-KY-2)supported by State Key Laboratory of Hydroscience and Hydraulic Engineering,China
文摘The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.
基金National Science and Technology Support Programs of China(No.2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-180)"333 High-level Personnel Training Project"Special Funded Projects in Jiangsu Province
文摘At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage between saddles and main cables. This article presents the researches conducted on structure selection and behavior characteristics of middle pylon, interaction mechanism between main cables and saddles and their anti-slippage safety performance, elastic and plastic stability analysis and safety assessment of steel middle pylon, and fatigue design load and method for steel pylon of Taizhou Bridge. According to the research results, a longitudinal inverted Y shape steel middle pylon is used in design, effectively solving many technical difficulties, and this type of pylon has become a suitable middle pylon structural form for many three-ovlon two-soan susoension bridges.
基金financially supported by National Basic Research Programs of China (No.2015CB654802 and No.2015GB118001)National Natural Science Foundation of China(Grant No.51471094)
文摘Three kinds of high Co Ni secondary hardening steels with different Ni contents were studied. The nanoscale austenite layers formed at the interface of matensite laths were observed. Both observation and diffusion kinetic simulation results showed that both Ni and Co did not obtain enough time to get the equilibrium content in this system. The Ni content in austenite layers decreased significantly, and Co content increased slightly with the decrease of Ni content in overall composition. The austenite stability was estimated by Olson-Cohen model, in which both chemical and mechanical driving force could be calculated by equilibrium thermodynamic and Mohr's circle methods, respectively. Simulation and mechanical test results showed that The decrease of Ni content in austenite layers would cause the change of austenite stability and decrease the fracture toughness of the steels. When the Ni content in the overall composition was lower than 7 wt. %, the Ni content in y phase would be lower than 20 wt.%. And the simulation value of M; (stress induced critical martensite transformation temperature) would be up to 80 ℃, which was about 60℃ higher than room temperature. Based on the analysis, the Ni content in the overall composition of high Co Ni secondary hardening steels should be higher than 8 wt. % in order to obtain a good fracture toughness.
基金supported by the National Natural Science Foundation of China(51671018,51531001,51422101,51371003,and 51671021)111 Project(B07003)+5 种基金International S&T Cooperation Program of China(2015DFG52600)Program for Changjiang Scholars and Innovative Research Team in University of China(IRT_14R05)the Projects of SKL-AMM-USTB(2016Z-04,2016-09,2016Z-16)the financial support from the Top-Notch Young Talents Programthe Fundamental Research Funds for the Central Universitiesthe financial support by US-NSF under contract DMR-1408722
文摘In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigate its dynamic response and underlying deformation mechanism. Materials with different grain sizes were tested to understand the effect of grain size, thus grain boundary volume, on the mechanical prop-erties. Microstructures of various samples both before and after deformation were examined using elec-tron backscatter diffraction and transmission electron microscopy. The dislocation structure as well as deformation-induced twins were analyzed and correlated with the measured mechanical properties. Plastic stability during tension of the current high-entropy alloy (HEA), in particular, at dynamic strain rates, was discussed in lights of strain-rate sensitivity and work hardening rate. It was found that, under dynamic conditions, the strength and uniform ductility increased simultaneously as a result of the mas-sive formation of deformation twins. Specifically, an ultimate tensile strength of 734 MPa and uniform elongation of-63% are obtained at 2.3×10^3 s^-1, indicating that the alloy has great potential for energy absorption upon impact loading.