The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity minin...The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.展开更多
This paper presents an advanced and integrated research approach to longwall mining-induced strata move- ment, stress changes, fractures, and gas flow dynamics with actual examples of its application from recent studi...This paper presents an advanced and integrated research approach to longwall mining-induced strata move- ment, stress changes, fractures, and gas flow dynamics with actual examples of its application from recent studies for coextraction of coal and methane development at Huainan Mining Group in China, in a deep and multi-seam mining environment. The advanced approach takes advantage of the latest techniques in Australia for mine scale geotechnical characterisation, field measurement, monitoring and numerical modelling. Key techniques described in this paper include coal mine site 3D geotechnical characterisation methods, surface deep downhole multi-point extensometers and piezometers for overburden displacement and pore pressure measurements during mining, tracer gas tests for goal gas flow patterns, and advanced numerical modelling codes for coupled coal mine strata, water and gas simulations, and longwall goaf gas ttow investigations. This integrated approach has resulted in significant insights into the complex dynamic imeraction between strata, groundwater, and gas during mining at Huainan Mining Group in recent years. Based on the lindings from the extensive field monitoring and numerical modelling studies, a three-dimensional annular-shaped over-lying zone along the perimeter of the longwall panel was identified for optimal methane drainage during mining.展开更多
Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studie...Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis.展开更多
基金supported by the National Natural Science Foundation of China (No.51774111)Henan province science and technology innovation outstanding talent fund of China (No.184200510003)
文摘The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.
文摘This paper presents an advanced and integrated research approach to longwall mining-induced strata move- ment, stress changes, fractures, and gas flow dynamics with actual examples of its application from recent studies for coextraction of coal and methane development at Huainan Mining Group in China, in a deep and multi-seam mining environment. The advanced approach takes advantage of the latest techniques in Australia for mine scale geotechnical characterisation, field measurement, monitoring and numerical modelling. Key techniques described in this paper include coal mine site 3D geotechnical characterisation methods, surface deep downhole multi-point extensometers and piezometers for overburden displacement and pore pressure measurements during mining, tracer gas tests for goal gas flow patterns, and advanced numerical modelling codes for coupled coal mine strata, water and gas simulations, and longwall goaf gas ttow investigations. This integrated approach has resulted in significant insights into the complex dynamic imeraction between strata, groundwater, and gas during mining at Huainan Mining Group in recent years. Based on the lindings from the extensive field monitoring and numerical modelling studies, a three-dimensional annular-shaped over-lying zone along the perimeter of the longwall panel was identified for optimal methane drainage during mining.
文摘Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis.