A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare...A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.展开更多
The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends com...The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends composites was investigated. Recycled plastic polypro-pylene (PP), high-density polyethylene (HDPE) and polystyrene (PS), were mixed with wood flour in a high speed blender and then extruded by a twin/single screw tandem extruder system to form wood flour/recycled plastic blends composites. Results show that the impact properties of the composites were improved more significantly by using SEBS-g-MAH compatibilizer than by using the mixtures of MAH and DCP via reactive blending in situ. However, contrary results were ob-served on the tensile and flexural properties of the corresponding com-posites. In General, the mechanical properties of composites made from recycled plastic blends were inferior to those made from virgin plastic blends, especially in elongation break. The morphological study verified that the interfacial adhesion or the compatibility of plastic blends with wood flour was improved by adding SEBS-g-MAH or in-situ grafting MAH. A better interfacial bonding between PP, HDPE, PS and wood flour was obtained by in-situ grafting MAH than the addition of SEBS-g-MAH. In-situ grafting MAH can be considered as a potential way of increasing the interfacial compatibility between plastic blends and wood flour. The storage modulus and damping factor of composites were also characterized through dynamic mechanical analysis (DMA).展开更多
More than a century after its initial synthesis,urea-formaldehyde(UF)resins still have dominant applications as adhesives,paints,and coatings.However,formaldehyde in this industry produces formaldehyde emissions that ...More than a century after its initial synthesis,urea-formaldehyde(UF)resins still have dominant applications as adhesives,paints,and coatings.However,formaldehyde in this industry produces formaldehyde emissions that are dangerous to health.Scientists have spent the last decade replacing formaldehyde and phenol with environmentally friendly substances such as glyoxal and tannin to create bio-based adhesives.This review covers recent advances in synthesizing glyoxal tannin-based resins,especially those made from sustainable raw material substitutes and changes made to synthetic processes to improve mechanical properties.The efficacy of using tannin-glyoxal adhesives in producing wood-based composites has been proven.The glyoxylate reaction forms cross-linked bridges between the aromatic sites of the tannin and glyoxal molecular structures.Glyoxal tannin adhesive with a greater percentage of glyoxal than tannin will produce an adhesive with better characteristics.The gel time reduces as the hardener concentration rises from 7.5%to 15%when glyoxal is used in adhesives.However,excessive amounts of glyoxal will result in a decrease in viscosity values.Glyoxal exhibits faster delivery degradation when it reaches a maximum temperature of approximately 130°C,although it initiates the curing process slightly slower at 110°C.Adding glyoxal to tannin-based adhesives can improve the mechanical properties of composite boards.The wet shear strength of the resulting plywood is increased by 105.4%with the addition of 5-weight percent tannin-based resin with glyoxal as a cross-linker in Soy Protein Adhesive.With glyoxal as a hardener,the panels produced showed good internal bond strengths(>0.35 MPa)and met the international standard specifications for interior-grade panels.展开更多
We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of compo...We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of composite board production including mixing ratio,fire retardant(%) and pressing time(min).We investigated the effects of these three process parameters in the mechanical and physical properties of the composite board.Afterwards,Box–Behnken design was performed as response surface methodology with desirability functions to attain the optimal level of mixing ratio,fire retardant and pressing time(min).The maximum modulus of elasticity(MOE) and modulus of rupture(MOR) were achieved at the optimal conditions of wood plastic mixing ratio of60:40,pressing time of 9 min and zero fire retardant percentage.The optimized MOR and MOE were 13.12 and1,781.0 N mm-2,respectively.展开更多
Creosote-treated wooden railroad crossties have been used for more than a century to support steel rails and to transfer load from the rails to the underlying ballast while keeping the rails at the correct gauge. As t...Creosote-treated wooden railroad crossties have been used for more than a century to support steel rails and to transfer load from the rails to the underlying ballast while keeping the rails at the correct gauge. As transportation engineers look for improved service life and environmental performance in railway systems, alternatives to the creosote-treated wooden crosstie are being considered. This paper compares the cradle-to-grave environmental life cycle assessment (LCA) results of creosote-treated wooden railroad crossties with the primary alternative products: concrete and plastic composite (P/C) crossties. This LCA includes a life cycle inventory (LCI) to catalogue the input and output data from crosstie manufacture, service life, and disposition, and a life cycle impact assessment (LCIA) to evaluate greenhouse gas (GHG) emissions, fossil fuel and water use, and emissions with the potential to cause acidification, smog, ecotoxicity, and eutrophication. Comparisons of the products are made at a functional unit of 1.61 kilometers (1.0 mile) of rail-road track per year. This LCA finds that the manufacture, use, and disposition of creosote-treated wooden railroad crossties offers lower fossil fuel and water use and lesser environmental impacts than competing products manufactured of concrete and P/C.展开更多
Novel fully biodegradable thermoplastic composite laminates reinforced with ultrathin wood laminae were prepared through a hot-pressing process by using two different thermoplastic starch(TPS)matrices.The microstructu...Novel fully biodegradable thermoplastic composite laminates reinforced with ultrathin wood laminae were prepared through a hot-pressing process by using two different thermoplastic starch(TPS)matrices.The microstructure and physical properties of the resulting unidirectional and bidirectional laminates were studied.The investigated materials presented a complex microstructure,in which the porosity of the wood laminae was almost entirely occluded by the polymer matrix.The mechanical behavior of the laminates was strongly affected by the obtained microstructure,and matrix penetration in wood pores led to biodegradable composites with elastic modulus and tensile strength higher than those of their constituents.Finally,thermal welding and thermoformability tests proved how these materials possess features typical of thermoplastic materials.展开更多
WPC (wood plastic composites) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of...WPC (wood plastic composites) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of partially substituting the polymer in the mixture and sustainable use of the earth's resources. The current WPC products on the market are to a large extent limited to extruded products. Nowadays, there is a great interest in the market for consumer products in more use of WPC as an alternative to pure thermoplastics in injection molding processes. This work presents the results of numerical simulation and experimental visualization of the mold filling process in injection molding of WPC. The 3D injection molding simulations were done with the commercial software package Autodesk~ Moldflow Insight 2016 (AMI). The mold filling experiments were conducted with a box-shaped test part. In contrast to unfilled polymers, the WPC has reduced melt elasticity so that the fountain flow often does not develop. This results in irregular flow front shapes in the molded part, especially at high filler content.展开更多
As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigate...As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigated the proposition of whether EVA is a suitable coupling agent for WPC or not. The results show that EVA with 8% VA is not a suitable coupling agent, because it reduces the mechanical properties of WPC without any significant effect on its physical properties. With an increase in the amount of wood powder, the mechanical properties of WPC decrease and the ability of water absorption of WPC increases.展开更多
The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virg...The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virgin or recycled, were mixed with wood flour in a high speed blender and then extruded by a specially designed twin/single screw extruder system to form wood-flour/thermoplastic-blends composites (WTBCs). Comparative studies were made to evaluate the effectiveness of the two modification methods of the thermoplastic blends, the one of the addition of maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MAH) as compatibilizer and the other of blend grafting of maleic anhydride (MAH) using dicumyl peroxide (DCP) as initiator by reactive extrusion. The results showed that the impact properties of WTBCs using SEBS-g-MAH as compatilizer were better improved than that of the blend grafting. However, adverse results were observed on the tensile and flexural properties of the corresponding WTBCs. The mechanical properties of WTBCs prepared from recycled plastic blends were poorer to some extent than that from virgin plastic blends in general, especially in elongation break. The morphology of WTBCs breaking section was analyzed by scanning electron microscopy (SEM) and the results showed that a good interfacial adhesion between wood flour and polymer matrix was observed with both of the two modification methods. However, by blend grafting of adding DCP as initiator and MAH as monomer, a better interfacial bonding between wood and plastic matrix was obtained than that of the addition of SEBS-g-MAH. Blend grafting can be considered as a potential way of increasing the interfacial compatibility of different plastics and between plastic blends and wood.展开更多
Concept of plastic wood and plastic wood furniture was summarized, categories of outdoor furniture in a narrow and broad sense introduced respectively. Furniture of plastic wood composite is characterized by "lei...Concept of plastic wood and plastic wood furniture was summarized, categories of outdoor furniture in a narrow and broad sense introduced respectively. Furniture of plastic wood composite is characterized by "leisure, natural and concise", dynamic loading is the major connection mode, and traditional mechanical connection is applied. Common damages of plastic wood composite and countermeasures were concluded, and corresponding resolutions proposed in view of existing problems of outdoor plastic wood composite furniture.展开更多
Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final qu...Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final quality of the product or process. Simulation model reduces the number of experiments and saves the wastage of material, time and money and are widely used in automobile industry, aircrafts manufacturing, process engineering, training for military, health care sector and many more. Wood Plastic Composite (WPC) is a bio-composite made by mixing wood fibers and plastic granules together at high temperature by compression molding or injection molding. A large quantity of WPC is rejected due to poor quality and low mechanical strength. There is a need to improve the understanding of the wood plastic composites, with both theoretical and experimental analysis. The impact of various parameters and processing conditions on the final product is not known to the industry people, due to less simulation models in this field. A new simulation software WPC Soft is developed to predict the mechanical and thermal properties of WPC. The software can predict the mechanical and thermal properties of WPC. The simulation results were validated with the experimental results and it was observed that the predicted values are quite close to the experimental values and with the further refining of the model, prediction can be further improved. The present simulation software can be easily used by the industry people and it requires very little knowledge of computers or modeling for its operation.展开更多
The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, w...The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, was investigated. Wood sawdust and polypropylene powder were subjected to heat treatment to 290℃ during 8 min (the conditions were similar to those employed on an industrial scale). The emitted compounds were collected and analyzed by gas chromatography-mass spectrometry (GC-MS). The analytical results showed that the unpleasant smell was emitted from the pyrogenation of wood sawdust rather than from the polypropylene powder. Nine types of compounds (hydrocarbons, ethers, phenols, aldehydes, ketones, alcohols, acids and their derivatives, furan and its derivatives, and nitrogen-containing compounds) were collected in the gas phase during heating. Among those 126 components detected by GC-MS, 112 compounds were identified.展开更多
This work investigated and quantified the physicomechanical properties of flat-pressed wood plastic composites produced with recycled polyethylene terephthalate, recycled polyethylene and sawdust derived from selected...This work investigated and quantified the physicomechanical properties of flat-pressed wood plastic composites produced with recycled polyethylene terephthalate, recycled polyethylene and sawdust derived from selected tropical timbers, namely, Nauclea diderrichii, Brachystegia eurycoma, Erythrophleum suaveolens and Prosopis africana, for possible utilization in the wood industry. The compounding of the polymer blends of the precursor plastics, namely recycled PET (rPET) and recycled PE (rPE) with the sawdust (SD) from the selected timbers to produce the desired wood rPET/rPE composites was carried out via the flat press method. The characterization of the physicomechanical properties of the wood plastic composites (WPCs) produced, such as the density, hardness, flexural strength, ultimate tensile strength, elongation %, thickness swelling and water absorption capacity was carried out using methods based mainly on the European Committee for Standardization (CEN) and the American Society for Testing Materials (ASTM) standards. The results of the investigation on the resultant composites indicated that changes in the SD content affected the density of flat-pressed WPCs in line with literature. Generally, it was observed that as wood dust increased and PET content decreased, the density of composites decreased with some deviations as expected probably due to the anisotropic nature of the wood fillers. The analysis of variance (ANOVA) revealed that there was a statistically significant variation in the wood composites of Nuclea diderichii based on the physicomechanical values as the p-value (0.020) obtained was less than the critical level of α = 0.05. It was also observed that the composite, Wood 1 Sample 5 (W<sub>1</sub>S<sub>5</sub>) which was composed of 40% rPE, 40% rPET and 20% SD (derived from Nuclea diderichii), had the highest percentage elongation (26.84%);the highest flexural strength (14.995 N/mm<sup>2</sup>) and possibly the least carbon footprint in the environment. These properties of W<sub>1</sub>S<sub>5</sub> suggest that it could therefore be the best option for the production of building materials like ceiling boards or floor skirting in the wood plastic composite industry. The results of these investigations have therefore indicated that the fabrication of WPCs from sawdust and rPET/rPE was technically feasible and had prospects for large scale production in the wood industry.展开更多
For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the inte...For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the interfacial adhesion between wood fiber and matrix. WPCs were prepared from wood fiber up to 60 wt.% and modified PP/PE was blended by extrusion. The rheological properties were studied by using dynamic measurement. According to the strain sweep test, the linear viscoelastic region of composites in the melt was determined. The result showed that the storage modulus was independent of the strain at low strain region (〈0.1%). The frequency sweep resuits indicated that all composites exhibited shear thinning behavior, and both the storage modulus and complex viscosity of MAH modified composites were decreased comparing to those unmodified. Flexural properties and impact strength of the prepared WPCs were measured according to the relevant standard specifications. The flexural and impact strength of the manufactured composites significantly increased and reached a maximum when MAH dosage was 1.0 wt%, whereas the flexural modulus after an initial decreased, also increased with MAH dosage. The increase in mechanical properties indicated that the presence of anhydride groups enhanced the interracial adhesion between wood fiber and PP/PE blends.展开更多
Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The ...Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai展开更多
Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electroma...Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electromagnetic shielding effectiveness were investigated. And P content, microstructure and surface feature of layers obtained at different temperatures were analyzed by energy dispersion spectrometer (EDS), X-ray diffraction (XRI)) and scanning electron microscopy (SEM). The results showed that layers with higher electro-conductivity and electromagnetic shielding effectiveness were obtained under the optimum conditions that plating solution was 500 mL, plating time was 30 min and plating temperature was 62℃. The results showed by EDS analysis; that P content increased gradually in a small extent with plating temperature increased. It was showed by XRD and SEM analysis that layers plated at different temperatures were all microcrystalline structure and uniform and successive, which had noticeable metal luster. Those indicated that plating temperature had little influence on microstructure and surface feature under pH value invariable.展开更多
Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated w...Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated with NaOH to improve its compatibility with the thermoplastic matrix. Maleated polypropylene (MAPP) was used as a coupling agent to improve the interfacial adhesion between KF, WF, and PP. Incorporation of KF improved the mechanical properties of WF/PP composites. Treatment of KF with NaOH resulted in further improvement in mechanical strength. Addition of 3% MAPP and 2% hydrolyzed KF (HKF) led to an increment of 93.8% in unnotched impact strength, 17.7% in notched impact strength, 86.8% in flexure strength, 50.8% in flexure modulus, and 94.1% in tensile strength compared to traditional WF/PP composites. Scanning electron microscopy of the cryo-fractured section of WF/PP showed that the HKF surface was rougher than the virgin KF, and the KF was randomly distributed in the composites, which might cause a mechanical interlocking between KF and polypropylene molecules in the composites.展开更多
The experimental creep data were focused on wood-flour (WF)/poly vinyl chloride (PVC) composites with the variations in additive concentrations of wood flour, silane coupling agent, organomodified montmorillonite ...The experimental creep data were focused on wood-flour (WF)/poly vinyl chloride (PVC) composites with the variations in additive concentrations of wood flour, silane coupling agent, organomodified montmorillonite (OMMT) and nano-cacium carbonate (nano-CaCO3). Their effects were analyzed using the Four-element Burger Model incorporating microscopic mechanisms. Total creep strain was low with increasing WF while elastic strain was high and plastic flow strain was low in modeling. Modification of WF with silane was beneficial to creep resistance, so did adding low ratio of OMMT (1.5 wt%) and nano-CaCO3 in composites. Thus, it was effective in reducing creep either by stiffening the PVC matrix using rigid nano-particles or by improving their adhesion with resin. However, superfluous quantity of any additament did not benefit the improvement owing to either earlier destruction of their agglomerates or stress-concentrated cracks in the over-incrassated interface.展开更多
Terpenes, aldehydes, ketones, benzene, and toluene are the important volatileorganic compounds (VOCs) emitted from wood composites. A sampling apparatus of VOCs for woodcomposites was designed and manufactured by Nort...Terpenes, aldehydes, ketones, benzene, and toluene are the important volatileorganic compounds (VOCs) emitted from wood composites. A sampling apparatus of VOCs for woodcomposites was designed and manufactured by Northeast Forestry University in China. Theconcentration of VOCs derived from wood based materials, such as flooring, panel wall, finishing,and furniture can be sampled in a small stainless steel chambers. A protocol is also developed inthis study to sample and measure the new and representative specimens. Preliminary research showedthat the properties of the equipment have good stability. The sort and the amount of differentcomponents can be detected from it. The apparatus is practicable.展开更多
Three kinds of composites (fiber/Polypropylene, fiber/Polyethelene, and fiber/Polystyrene) were made by using hot pressing process for substrate of floorboard and the properties of each kind of composites were teste...Three kinds of composites (fiber/Polypropylene, fiber/Polyethelene, and fiber/Polystyrene) were made by using hot pressing process for substrate of floorboard and the properties of each kind of composites were tested. MORs of PP/wood fiber, PS/fiber, and PE/fiber composites with coupling agent added were raised by 18.4%, 37.1%, and 42%. respectively, compared to those without coupling agent. Among the three kinds of fiber/plastic composites, fiber/PP composite has best mechanical properties, and it can meet quality standard of eligible grade product and come up to the excellent grade products of China when the coupling agent is added. The performance of composite made of PE/fiber or PS/fiber can exceed qualified product grade only with coupling agent added.展开更多
基金financially supported from the National Natural Science Foundation of China(No.U23A20605)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2020-072)+2 种基金Anhui Jieqing Project,China(No.2208085J19)Anhui Graduate Innovation and Entrepreneurship Practice Project,China(No.2022cxcysj090)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202202).
文摘A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.
基金supported by the National High Technology Research and Development Program of China(2010AA101703)the Natural Science Foundation of Heilongjiang Province of China (C200950)the Fundamental Research Fundsfor the Central Universities (DL09BB38)
文摘The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends composites was investigated. Recycled plastic polypro-pylene (PP), high-density polyethylene (HDPE) and polystyrene (PS), were mixed with wood flour in a high speed blender and then extruded by a twin/single screw tandem extruder system to form wood flour/recycled plastic blends composites. Results show that the impact properties of the composites were improved more significantly by using SEBS-g-MAH compatibilizer than by using the mixtures of MAH and DCP via reactive blending in situ. However, contrary results were ob-served on the tensile and flexural properties of the corresponding com-posites. In General, the mechanical properties of composites made from recycled plastic blends were inferior to those made from virgin plastic blends, especially in elongation break. The morphological study verified that the interfacial adhesion or the compatibility of plastic blends with wood flour was improved by adding SEBS-g-MAH or in-situ grafting MAH. A better interfacial bonding between PP, HDPE, PS and wood flour was obtained by in-situ grafting MAH than the addition of SEBS-g-MAH. In-situ grafting MAH can be considered as a potential way of increasing the interfacial compatibility between plastic blends and wood flour. The storage modulus and damping factor of composites were also characterized through dynamic mechanical analysis (DMA).
基金funded by National Research and Innovation Agency,Republic of Indonesia,Research Grant No.65/II.7/HK/2022,titled Pengembangan Produk Oriented Strand Board Unggul dari Kayu Ringan dan Cepat Tumbuh dalam Rangka Pengembangan Produk Biokomposit Prospektif。
文摘More than a century after its initial synthesis,urea-formaldehyde(UF)resins still have dominant applications as adhesives,paints,and coatings.However,formaldehyde in this industry produces formaldehyde emissions that are dangerous to health.Scientists have spent the last decade replacing formaldehyde and phenol with environmentally friendly substances such as glyoxal and tannin to create bio-based adhesives.This review covers recent advances in synthesizing glyoxal tannin-based resins,especially those made from sustainable raw material substitutes and changes made to synthetic processes to improve mechanical properties.The efficacy of using tannin-glyoxal adhesives in producing wood-based composites has been proven.The glyoxylate reaction forms cross-linked bridges between the aromatic sites of the tannin and glyoxal molecular structures.Glyoxal tannin adhesive with a greater percentage of glyoxal than tannin will produce an adhesive with better characteristics.The gel time reduces as the hardener concentration rises from 7.5%to 15%when glyoxal is used in adhesives.However,excessive amounts of glyoxal will result in a decrease in viscosity values.Glyoxal exhibits faster delivery degradation when it reaches a maximum temperature of approximately 130°C,although it initiates the curing process slightly slower at 110°C.Adding glyoxal to tannin-based adhesives can improve the mechanical properties of composite boards.The wet shear strength of the resulting plywood is increased by 105.4%with the addition of 5-weight percent tannin-based resin with glyoxal as a cross-linker in Soy Protein Adhesive.With glyoxal as a hardener,the panels produced showed good internal bond strengths(>0.35 MPa)and met the international standard specifications for interior-grade panels.
文摘We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of composite board production including mixing ratio,fire retardant(%) and pressing time(min).We investigated the effects of these three process parameters in the mechanical and physical properties of the composite board.Afterwards,Box–Behnken design was performed as response surface methodology with desirability functions to attain the optimal level of mixing ratio,fire retardant and pressing time(min).The maximum modulus of elasticity(MOE) and modulus of rupture(MOR) were achieved at the optimal conditions of wood plastic mixing ratio of60:40,pressing time of 9 min and zero fire retardant percentage.The optimized MOR and MOE were 13.12 and1,781.0 N mm-2,respectively.
文摘Creosote-treated wooden railroad crossties have been used for more than a century to support steel rails and to transfer load from the rails to the underlying ballast while keeping the rails at the correct gauge. As transportation engineers look for improved service life and environmental performance in railway systems, alternatives to the creosote-treated wooden crosstie are being considered. This paper compares the cradle-to-grave environmental life cycle assessment (LCA) results of creosote-treated wooden railroad crossties with the primary alternative products: concrete and plastic composite (P/C) crossties. This LCA includes a life cycle inventory (LCI) to catalogue the input and output data from crosstie manufacture, service life, and disposition, and a life cycle impact assessment (LCIA) to evaluate greenhouse gas (GHG) emissions, fossil fuel and water use, and emissions with the potential to cause acidification, smog, ecotoxicity, and eutrophication. Comparisons of the products are made at a functional unit of 1.61 kilometers (1.0 mile) of rail-road track per year. This LCA finds that the manufacture, use, and disposition of creosote-treated wooden railroad crossties offers lower fossil fuel and water use and lesser environmental impacts than competing products manufactured of concrete and P/C.
文摘Novel fully biodegradable thermoplastic composite laminates reinforced with ultrathin wood laminae were prepared through a hot-pressing process by using two different thermoplastic starch(TPS)matrices.The microstructure and physical properties of the resulting unidirectional and bidirectional laminates were studied.The investigated materials presented a complex microstructure,in which the porosity of the wood laminae was almost entirely occluded by the polymer matrix.The mechanical behavior of the laminates was strongly affected by the obtained microstructure,and matrix penetration in wood pores led to biodegradable composites with elastic modulus and tensile strength higher than those of their constituents.Finally,thermal welding and thermoformability tests proved how these materials possess features typical of thermoplastic materials.
文摘WPC (wood plastic composites) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of partially substituting the polymer in the mixture and sustainable use of the earth's resources. The current WPC products on the market are to a large extent limited to extruded products. Nowadays, there is a great interest in the market for consumer products in more use of WPC as an alternative to pure thermoplastics in injection molding processes. This work presents the results of numerical simulation and experimental visualization of the mold filling process in injection molding of WPC. The 3D injection molding simulations were done with the commercial software package Autodesk~ Moldflow Insight 2016 (AMI). The mold filling experiments were conducted with a box-shaped test part. In contrast to unfilled polymers, the WPC has reduced melt elasticity so that the fountain flow often does not develop. This results in irregular flow front shapes in the molded part, especially at high filler content.
文摘As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigated the proposition of whether EVA is a suitable coupling agent for WPC or not. The results show that EVA with 8% VA is not a suitable coupling agent, because it reduces the mechanical properties of WPC without any significant effect on its physical properties. With an increase in the amount of wood powder, the mechanical properties of WPC decrease and the ability of water absorption of WPC increases.
文摘The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virgin or recycled, were mixed with wood flour in a high speed blender and then extruded by a specially designed twin/single screw extruder system to form wood-flour/thermoplastic-blends composites (WTBCs). Comparative studies were made to evaluate the effectiveness of the two modification methods of the thermoplastic blends, the one of the addition of maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MAH) as compatibilizer and the other of blend grafting of maleic anhydride (MAH) using dicumyl peroxide (DCP) as initiator by reactive extrusion. The results showed that the impact properties of WTBCs using SEBS-g-MAH as compatilizer were better improved than that of the blend grafting. However, adverse results were observed on the tensile and flexural properties of the corresponding WTBCs. The mechanical properties of WTBCs prepared from recycled plastic blends were poorer to some extent than that from virgin plastic blends in general, especially in elongation break. The morphology of WTBCs breaking section was analyzed by scanning electron microscopy (SEM) and the results showed that a good interfacial adhesion between wood flour and polymer matrix was observed with both of the two modification methods. However, by blend grafting of adding DCP as initiator and MAH as monomer, a better interfacial bonding between wood and plastic matrix was obtained than that of the addition of SEBS-g-MAH. Blend grafting can be considered as a potential way of increasing the interfacial compatibility of different plastics and between plastic blends and wood.
基金Supported by Social Science Program of Ganzhou City: Application of Plastic Wood Furniture in Public Landscape Furniture (2009175)SocialScience Program of Ganzhou City: Promotion of Plastic Wood Furniture in South Ganzhou (2011199)Natural Hatching Program of Jiangxi Vocational College of Environmental Engineering: Promotion of Plastic Wood Composite in South Ganzhou: Promotion of Plastic Wood in SouthGanzhou (FH-2011-7)
文摘Concept of plastic wood and plastic wood furniture was summarized, categories of outdoor furniture in a narrow and broad sense introduced respectively. Furniture of plastic wood composite is characterized by "leisure, natural and concise", dynamic loading is the major connection mode, and traditional mechanical connection is applied. Common damages of plastic wood composite and countermeasures were concluded, and corresponding resolutions proposed in view of existing problems of outdoor plastic wood composite furniture.
文摘Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final quality of the product or process. Simulation model reduces the number of experiments and saves the wastage of material, time and money and are widely used in automobile industry, aircrafts manufacturing, process engineering, training for military, health care sector and many more. Wood Plastic Composite (WPC) is a bio-composite made by mixing wood fibers and plastic granules together at high temperature by compression molding or injection molding. A large quantity of WPC is rejected due to poor quality and low mechanical strength. There is a need to improve the understanding of the wood plastic composites, with both theoretical and experimental analysis. The impact of various parameters and processing conditions on the final product is not known to the industry people, due to less simulation models in this field. A new simulation software WPC Soft is developed to predict the mechanical and thermal properties of WPC. The software can predict the mechanical and thermal properties of WPC. The simulation results were validated with the experimental results and it was observed that the predicted values are quite close to the experimental values and with the further refining of the model, prediction can be further improved. The present simulation software can be easily used by the industry people and it requires very little knowledge of computers or modeling for its operation.
文摘The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, was investigated. Wood sawdust and polypropylene powder were subjected to heat treatment to 290℃ during 8 min (the conditions were similar to those employed on an industrial scale). The emitted compounds were collected and analyzed by gas chromatography-mass spectrometry (GC-MS). The analytical results showed that the unpleasant smell was emitted from the pyrogenation of wood sawdust rather than from the polypropylene powder. Nine types of compounds (hydrocarbons, ethers, phenols, aldehydes, ketones, alcohols, acids and their derivatives, furan and its derivatives, and nitrogen-containing compounds) were collected in the gas phase during heating. Among those 126 components detected by GC-MS, 112 compounds were identified.
文摘This work investigated and quantified the physicomechanical properties of flat-pressed wood plastic composites produced with recycled polyethylene terephthalate, recycled polyethylene and sawdust derived from selected tropical timbers, namely, Nauclea diderrichii, Brachystegia eurycoma, Erythrophleum suaveolens and Prosopis africana, for possible utilization in the wood industry. The compounding of the polymer blends of the precursor plastics, namely recycled PET (rPET) and recycled PE (rPE) with the sawdust (SD) from the selected timbers to produce the desired wood rPET/rPE composites was carried out via the flat press method. The characterization of the physicomechanical properties of the wood plastic composites (WPCs) produced, such as the density, hardness, flexural strength, ultimate tensile strength, elongation %, thickness swelling and water absorption capacity was carried out using methods based mainly on the European Committee for Standardization (CEN) and the American Society for Testing Materials (ASTM) standards. The results of the investigation on the resultant composites indicated that changes in the SD content affected the density of flat-pressed WPCs in line with literature. Generally, it was observed that as wood dust increased and PET content decreased, the density of composites decreased with some deviations as expected probably due to the anisotropic nature of the wood fillers. The analysis of variance (ANOVA) revealed that there was a statistically significant variation in the wood composites of Nuclea diderichii based on the physicomechanical values as the p-value (0.020) obtained was less than the critical level of α = 0.05. It was also observed that the composite, Wood 1 Sample 5 (W<sub>1</sub>S<sub>5</sub>) which was composed of 40% rPE, 40% rPET and 20% SD (derived from Nuclea diderichii), had the highest percentage elongation (26.84%);the highest flexural strength (14.995 N/mm<sup>2</sup>) and possibly the least carbon footprint in the environment. These properties of W<sub>1</sub>S<sub>5</sub> suggest that it could therefore be the best option for the production of building materials like ceiling boards or floor skirting in the wood plastic composite industry. The results of these investigations have therefore indicated that the fabrication of WPCs from sawdust and rPET/rPE was technically feasible and had prospects for large scale production in the wood industry.
文摘For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the interfacial adhesion between wood fiber and matrix. WPCs were prepared from wood fiber up to 60 wt.% and modified PP/PE was blended by extrusion. The rheological properties were studied by using dynamic measurement. According to the strain sweep test, the linear viscoelastic region of composites in the melt was determined. The result showed that the storage modulus was independent of the strain at low strain region (〈0.1%). The frequency sweep resuits indicated that all composites exhibited shear thinning behavior, and both the storage modulus and complex viscosity of MAH modified composites were decreased comparing to those unmodified. Flexural properties and impact strength of the prepared WPCs were measured according to the relevant standard specifications. The flexural and impact strength of the manufactured composites significantly increased and reached a maximum when MAH dosage was 1.0 wt%, whereas the flexural modulus after an initial decreased, also increased with MAH dosage. The increase in mechanical properties indicated that the presence of anhydride groups enhanced the interracial adhesion between wood fiber and PP/PE blends.
基金Supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).
文摘Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai
基金The research was supported by the National Natural Science Foundation of China (30571454). Natural Science Foundation of Heilongjiang Province (C0210) and Harbin City Youth Science Faud (2004AFQXJ027).
文摘Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electromagnetic shielding effectiveness were investigated. And P content, microstructure and surface feature of layers obtained at different temperatures were analyzed by energy dispersion spectrometer (EDS), X-ray diffraction (XRI)) and scanning electron microscopy (SEM). The results showed that layers with higher electro-conductivity and electromagnetic shielding effectiveness were obtained under the optimum conditions that plating solution was 500 mL, plating time was 30 min and plating temperature was 62℃. The results showed by EDS analysis; that P content increased gradually in a small extent with plating temperature increased. It was showed by XRD and SEM analysis that layers plated at different temperatures were all microcrystalline structure and uniform and successive, which had noticeable metal luster. Those indicated that plating temperature had little influence on microstructure and surface feature under pH value invariable.
基金supported by the National Natural Science Foundation of China (Project Nos. 31010103905 and31070507)Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0608)the Fundamental Research Funds for the Central Universities (DL12DB02)
文摘Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated with NaOH to improve its compatibility with the thermoplastic matrix. Maleated polypropylene (MAPP) was used as a coupling agent to improve the interfacial adhesion between KF, WF, and PP. Incorporation of KF improved the mechanical properties of WF/PP composites. Treatment of KF with NaOH resulted in further improvement in mechanical strength. Addition of 3% MAPP and 2% hydrolyzed KF (HKF) led to an increment of 93.8% in unnotched impact strength, 17.7% in notched impact strength, 86.8% in flexure strength, 50.8% in flexure modulus, and 94.1% in tensile strength compared to traditional WF/PP composites. Scanning electron microscopy of the cryo-fractured section of WF/PP showed that the HKF surface was rougher than the virgin KF, and the KF was randomly distributed in the composites, which might cause a mechanical interlocking between KF and polypropylene molecules in the composites.
文摘The experimental creep data were focused on wood-flour (WF)/poly vinyl chloride (PVC) composites with the variations in additive concentrations of wood flour, silane coupling agent, organomodified montmorillonite (OMMT) and nano-cacium carbonate (nano-CaCO3). Their effects were analyzed using the Four-element Burger Model incorporating microscopic mechanisms. Total creep strain was low with increasing WF while elastic strain was high and plastic flow strain was low in modeling. Modification of WF with silane was beneficial to creep resistance, so did adding low ratio of OMMT (1.5 wt%) and nano-CaCO3 in composites. Thus, it was effective in reducing creep either by stiffening the PVC matrix using rigid nano-particles or by improving their adhesion with resin. However, superfluous quantity of any additament did not benefit the improvement owing to either earlier destruction of their agglomerates or stress-concentrated cracks in the over-incrassated interface.
基金This project is supported by the grand of the Oversea Back Scholar Research Startup of China Education Ministry, Heilongjiang Post-doctorial Research Startup and NEFU Creative Item.
文摘Terpenes, aldehydes, ketones, benzene, and toluene are the important volatileorganic compounds (VOCs) emitted from wood composites. A sampling apparatus of VOCs for woodcomposites was designed and manufactured by Northeast Forestry University in China. Theconcentration of VOCs derived from wood based materials, such as flooring, panel wall, finishing,and furniture can be sampled in a small stainless steel chambers. A protocol is also developed inthis study to sample and measure the new and representative specimens. Preliminary research showedthat the properties of the equipment have good stability. The sort and the amount of differentcomponents can be detected from it. The apparatus is practicable.
基金The project was supported by: 1. the Natural Science Foundation of Fujian Province of China(E0310025). 2. Fujian province Educational Committee key project(JA03047). 3 Fujian province Science and Technology Committee key project(2003H015). 4. Foundation of key laboratory of hiomaterial of Ministry of Education(04-08).
文摘Three kinds of composites (fiber/Polypropylene, fiber/Polyethelene, and fiber/Polystyrene) were made by using hot pressing process for substrate of floorboard and the properties of each kind of composites were tested. MORs of PP/wood fiber, PS/fiber, and PE/fiber composites with coupling agent added were raised by 18.4%, 37.1%, and 42%. respectively, compared to those without coupling agent. Among the three kinds of fiber/plastic composites, fiber/PP composite has best mechanical properties, and it can meet quality standard of eligible grade product and come up to the excellent grade products of China when the coupling agent is added. The performance of composite made of PE/fiber or PS/fiber can exceed qualified product grade only with coupling agent added.