Seismic activity is quite strong in the peri-Adriatic zones, whereas the internal part of the Adria plate is almost aseismic. This pattern suggests that Adria is a solid block that interacts with the surrounding belts...Seismic activity is quite strong in the peri-Adriatic zones, whereas the internal part of the Adria plate is almost aseismic. This pattern suggests that Adria is a solid block that interacts with the surrounding belts, trying to move roughly northward. Each major earthquake in a peri-Adriatic zone triggers the acceleration of the decoupled Adria sector, which induces a perturbation of the stress/strain fields in the still blocked boundaries of the plate. Step by step, the displacement of Adria involves more and more northern zones to finally reach the northern front of the plate (eastern Southern Alps). This interpretation seems to be compatible with the time patterns of seismic activity in the main peri-Adriatic zones since 1600 A.D., which may suggest repeated northward migrations of seismic crises. Each supposed migrating sequence involves major earthquakes in most zones. The main features of the first 4 seismic sequences (1600-1930) are used to get insights into possible regularities in the progressive activations of the peri-Adriatic zones. This information and the main features of the ongoing migrating sequence (since 1931) are then used to tentatively recognize the peri-Adriatic zones where the occurrence of next major earthquakes may be most likely.展开更多
As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tecto...As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics--and its influence on the deep Earth and climate-it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of 'full-plates' (including oceanic lithosphere) becomes increasingly challenging with age. Prior to 150 Ma ~60% of the lithosphere is missing and re- constructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these 'continental' re- constructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying) plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geo- dynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410-250 Ma) together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.展开更多
文摘Seismic activity is quite strong in the peri-Adriatic zones, whereas the internal part of the Adria plate is almost aseismic. This pattern suggests that Adria is a solid block that interacts with the surrounding belts, trying to move roughly northward. Each major earthquake in a peri-Adriatic zone triggers the acceleration of the decoupled Adria sector, which induces a perturbation of the stress/strain fields in the still blocked boundaries of the plate. Step by step, the displacement of Adria involves more and more northern zones to finally reach the northern front of the plate (eastern Southern Alps). This interpretation seems to be compatible with the time patterns of seismic activity in the main peri-Adriatic zones since 1600 A.D., which may suggest repeated northward migrations of seismic crises. Each supposed migrating sequence involves major earthquakes in most zones. The main features of the first 4 seismic sequences (1600-1930) are used to get insights into possible regularities in the progressive activations of the peri-Adriatic zones. This information and the main features of the ongoing migrating sequence (since 1931) are then used to tentatively recognize the peri-Adriatic zones where the occurrence of next major earthquakes may be most likely.
基金The European Research Council under the Euro-pean Union's Seventh Framework Programme(FP7/2007-2013)/ERC Advanced Grant Agreement Number 267631(Beyond Plate Tectonics)the Research Council of Norway through its Centres of Excellence funding scheme,project number 223272(CEED)are acknowledged for financial support
文摘As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics--and its influence on the deep Earth and climate-it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of 'full-plates' (including oceanic lithosphere) becomes increasingly challenging with age. Prior to 150 Ma ~60% of the lithosphere is missing and re- constructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these 'continental' re- constructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying) plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geo- dynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410-250 Ma) together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.