The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, conti...The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.展开更多
The linear buckling problems of plates and shells were analysed using a recently developped quadrilateral,16-degrees of freedom flat shell element (called DKQ16).The geometrical stiffness matrix was established.Compar...The linear buckling problems of plates and shells were analysed using a recently developped quadrilateral,16-degrees of freedom flat shell element (called DKQ16).The geometrical stiffness matrix was established.Comparison of the numerical results for several typical problems shows that the DKQ16 element has a very good precision for the linear buckling problems of plates and shells.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11072009, 11172013)the Beijing Education Committee Development Project (Grant SQKM2016100 05001)the Beijing University of Technology Basic Research Fund (Grant 001000514313003)
文摘The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.
文摘The linear buckling problems of plates and shells were analysed using a recently developped quadrilateral,16-degrees of freedom flat shell element (called DKQ16).The geometrical stiffness matrix was established.Comparison of the numerical results for several typical problems shows that the DKQ16 element has a very good precision for the linear buckling problems of plates and shells.