The stiffness model of the finite element is applied to the Kirchhoff-love closed-form plate buckling;buckling is always in focus in plate assemblages. The useful Eigen-value solutions are unable to separate a square ...The stiffness model of the finite element is applied to the Kirchhoff-love closed-form plate buckling;buckling is always in focus in plate assemblages. The useful Eigen-value solutions are unable to separate a square plate from a much weaker long one in the most commonly-used all-simply supported plate (SSSS), among others. Spring-values of the Kirchhoff-Love plate are sought;once found, displacement-factors can be determined. Comparative </span><span style="font-family:Verdana;">displacements allow </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">an </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">easier and better evaluation of buckling-factors,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> pure-shear, vibration and so are termed “buckling-displacement-factors”. In testing, many plates in mixed boundary conditions are evaluated for displacement</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">assisted buckling-solutions, first. The displacement-factors made from fundamental Eigen-vectors, in a single-pass, are found to be within about one-percent of known elastic values. It is found that the Kirchhoff-Love plate</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">spring and the finite-element spring, demonstrated, here, in the assemblage of beam-elements, are equivalent from the results. In either case</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> stiffness is first assembled, ready for any loading—transverse, buckling, shear, vibration. The simply-supported plate draws the only exact vibration solution, and so, in an additional new effort, all other results are calibrated from it;direct vibration solutions are made for comparison but such results are, hardly, better. In the process, interactive Kirchhoff-Love plate-field-sheets are presented, for design. It is now additionally demanded that the solution Eigen-vector be </span><span style="font-family:Verdana;">developable into a recognizable deflection-factor. A weaker plate cannot possess greater buckling strength, this is a check;to find stiffness the</span><span style="font-family:Verdana;"> deflection-factor must be exact or nearly so. Several examples justify the characteristic buckling displacement-factor as a new tool</span></span></span></span><span style="font-family:Verdana;">.展开更多
In order to provide technical supports for designing a new type of spiral plate forming machine, FEM analysis and simulation were carried out based on pressing tests. Deformation, stress distribution, residual stress ...In order to provide technical supports for designing a new type of spiral plate forming machine, FEM analysis and simulation were carried out based on pressing tests. Deformation, stress distribution, residual stress and spring back of the spiral plate were calculated. Relationships between the spiral pitch to inclination angle of the punch and die, material properties and thickness of the plate were analyzed. A data converter was developed and effectively used in the analysis. The results of FEM analysis and simulation have been applied to design the spiral plate forming machines.展开更多
Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton cont...Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton control design, but also makes it difficult to improve assistive level. The Variable Stiffness Actuator (VSA), as a physical variable stiffness mechanism, has the characteristics of dynamic stiffness adjustment and high stiffness control bandwidth, which is in line with the stiffness matching experiment. However, there are still few works exploring the assistive human stiffness matching experiment based on VSA. Therefore, this paper designs a hip exoskeleton based on VSA actuator and studies CPG human motion phase recognition algorithm. Firstly, this paper puts forward the requirements of variable stiffness experimental design and the output torque and variable stiffness dynamic response standards based on human lower limb motion parameters. Plate springs are used as elastic elements to establish the mechanical principle of variable stiffness, and a small variable stiffness actuator is designed based on the plate spring. Then the corresponding theoretical dynamic model is established and analyzed. Starting from the CPG phase recognition algorithm, this paper uses perturbation theory to expand the first-order CPG unit, obtains the phase convergence equation and verifies the phase convergence when using hip joint angle as the input signal with the same frequency, and then expands the second-order CPG unit under the premise of circular limit cycle and analyzes the frequency convergence criterion. Afterwards, this paper extracts the plate spring modal from Abaqus and generates the neutral file of the flexible body model to import into Adams, and conducts torque-stiffness one-way loading and reciprocating loading experiments on the variable stiffness mechanism. After that, Simulink is used to verify the validity of the criterion. Finally, based on the above criterions, the signal mean value is removed using feedback structure to complete the phase recognition algorithm for the human hip joint angle signal, and the convergence is verified using actual human walking data on flat ground.展开更多
文摘The stiffness model of the finite element is applied to the Kirchhoff-love closed-form plate buckling;buckling is always in focus in plate assemblages. The useful Eigen-value solutions are unable to separate a square plate from a much weaker long one in the most commonly-used all-simply supported plate (SSSS), among others. Spring-values of the Kirchhoff-Love plate are sought;once found, displacement-factors can be determined. Comparative </span><span style="font-family:Verdana;">displacements allow </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">an </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">easier and better evaluation of buckling-factors,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> pure-shear, vibration and so are termed “buckling-displacement-factors”. In testing, many plates in mixed boundary conditions are evaluated for displacement</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">assisted buckling-solutions, first. The displacement-factors made from fundamental Eigen-vectors, in a single-pass, are found to be within about one-percent of known elastic values. It is found that the Kirchhoff-Love plate</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">spring and the finite-element spring, demonstrated, here, in the assemblage of beam-elements, are equivalent from the results. In either case</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> stiffness is first assembled, ready for any loading—transverse, buckling, shear, vibration. The simply-supported plate draws the only exact vibration solution, and so, in an additional new effort, all other results are calibrated from it;direct vibration solutions are made for comparison but such results are, hardly, better. In the process, interactive Kirchhoff-Love plate-field-sheets are presented, for design. It is now additionally demanded that the solution Eigen-vector be </span><span style="font-family:Verdana;">developable into a recognizable deflection-factor. A weaker plate cannot possess greater buckling strength, this is a check;to find stiffness the</span><span style="font-family:Verdana;"> deflection-factor must be exact or nearly so. Several examples justify the characteristic buckling displacement-factor as a new tool</span></span></span></span><span style="font-family:Verdana;">.
基金Supported by the New-Cooperation Project of Japan Ministry of Economy,Trade and Industry
文摘In order to provide technical supports for designing a new type of spiral plate forming machine, FEM analysis and simulation were carried out based on pressing tests. Deformation, stress distribution, residual stress and spring back of the spiral plate were calculated. Relationships between the spiral pitch to inclination angle of the punch and die, material properties and thickness of the plate were analyzed. A data converter was developed and effectively used in the analysis. The results of FEM analysis and simulation have been applied to design the spiral plate forming machines.
文摘Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton control design, but also makes it difficult to improve assistive level. The Variable Stiffness Actuator (VSA), as a physical variable stiffness mechanism, has the characteristics of dynamic stiffness adjustment and high stiffness control bandwidth, which is in line with the stiffness matching experiment. However, there are still few works exploring the assistive human stiffness matching experiment based on VSA. Therefore, this paper designs a hip exoskeleton based on VSA actuator and studies CPG human motion phase recognition algorithm. Firstly, this paper puts forward the requirements of variable stiffness experimental design and the output torque and variable stiffness dynamic response standards based on human lower limb motion parameters. Plate springs are used as elastic elements to establish the mechanical principle of variable stiffness, and a small variable stiffness actuator is designed based on the plate spring. Then the corresponding theoretical dynamic model is established and analyzed. Starting from the CPG phase recognition algorithm, this paper uses perturbation theory to expand the first-order CPG unit, obtains the phase convergence equation and verifies the phase convergence when using hip joint angle as the input signal with the same frequency, and then expands the second-order CPG unit under the premise of circular limit cycle and analyzes the frequency convergence criterion. Afterwards, this paper extracts the plate spring modal from Abaqus and generates the neutral file of the flexible body model to import into Adams, and conducts torque-stiffness one-way loading and reciprocating loading experiments on the variable stiffness mechanism. After that, Simulink is used to verify the validity of the criterion. Finally, based on the above criterions, the signal mean value is removed using feedback structure to complete the phase recognition algorithm for the human hip joint angle signal, and the convergence is verified using actual human walking data on flat ground.