Objective The nearly parallel N-S-trending rifts in southern Tibet represent the E-W extension of the Tibet Plateau. Most data which constrained the age of the extensional deformation come from isotopic dating of the...Objective The nearly parallel N-S-trending rifts in southern Tibet represent the E-W extension of the Tibet Plateau. Most data which constrained the age of the extensional deformation come from isotopic dating of the dikes probably related to the activity of the nearly N-S faulting and micas from hydrothermal activity and the low- temperature thermochronology of plateau uplift. Previous research shows that there are at least three different ideas about the age of the rifts: (1) older than 16-12 Ma, (2) 14- 10 Ma, and (3) 8-4 Ma (Fig. la). For the old sedimentary strata represented the beginning of the rifting, the dating of the sediments helps to better define the initial rifting age.展开更多
Poor bleaching is a significant problem for Optically Stimulated Luminescence(OSL) dating of glacial sediments. Five young glacial samples(including two modern analogues) from different depositional settings were coll...Poor bleaching is a significant problem for Optically Stimulated Luminescence(OSL) dating of glacial sediments. Five young glacial samples(including two modern analogues) from different depositional settings were collected beyond the Yingpu Glacier in the eastern Qinghai-Tibetan Plateau. De was determined using different OSL methods. The luminescence characteristics and dating results showed that the large aliquot quartz Blue Stimulated Luminescence(BSL) is more applicable than polymineral infrared stimulated luminescence(IRSL) method. Small aliquot quartz BSL results showed poor luminescence properties due to low luminescence sensitivity of quartz in this area. The dating results also indicated that glaciofluvial samples deposited close to ice margin(~40 m and ~700 m) and supraglacial debris dominated lateral moraine samples are relatively well-bleached, whereas samples from ground moraine and low terminal moraine were poorly bleached, probably due to containing subglacial and englacial debris. The residual doses of glaciofluvial and lateral moraine crest samples were below a few Gy and age overestimations were below a few hundred years. The ground moraine and low terminal moraine samples had residual doses as high as ~110 Gy, and ages were overestimated by ~15-17 ka.展开更多
The Dongchuang gold deposit in the Xiaoqinling area is an orogenic-type lodegold deposit. It is one of the few superlarge (>100 t Au) deposits in China. Although it has beenargued that it was formed in the Mesozoic...The Dongchuang gold deposit in the Xiaoqinling area is an orogenic-type lodegold deposit. It is one of the few superlarge (>100 t Au) deposits in China. Although it has beenargued that it was formed in the Mesozoic, related isotopic age data have not been reported inprevious studies. Based on detailed geological study, the authors have carried out isotopic datingon various metallogenic generations. The ore-forming process of the Dongchuang gold deposit consistsof four stages: coarse-grained pyrite-bearing quartz veins (stage I), fine-grained pyrite-quartzveinlets (stage II), multi-sulfides (stage III) and carbonate-quartz veinlets (stage IV). Ar-Ardating on mineral separates of stages I, II and III yields plateau ages of 142.9 +- 2.9 Ma, 132.2 +-2.6 Ma and 128.3 +- 6.2 Ma, respectively. Sericite separates from stage II assemblage also yield anAr-Ar isochron age of 132.6 +- 2.7 Ma, similar to the Ar-Ar plateau age. These results suggest thatthe Dongchuang gold deposit was mainly formed during 143-128 Ma, coinciding with the authors'geological observations and previous hypothesis. This ore formation is coeval with theregional-tectonic transition from collisional compression to extension, strongly showing that thedecompression-geothermal increase regime during compression-to-extension transition is the mostconducive geodynamic environment to orogenic-type gold mineralization.展开更多
The Erguna Fault runs along the east bank of the Erguna River in NE China and is a large-scale ductile shear zone comprising granitic mylonites. This paper reports on the geometry, kinematic indicators, and 40Ar/39 Ar...The Erguna Fault runs along the east bank of the Erguna River in NE China and is a large-scale ductile shear zone comprising granitic mylonites. This paper reports on the geometry, kinematic indicators, and 40Ar/39 Ar biotite ages of the granitic mylonites, to constrain the structural characteristics, forming age, and tectonic attribute of the Erguna ductile shear zone. The zone strikes NE and records a top-to-the-NW sense of shear. A mylonitic foliation and stretching lineation are well developed in the mylonites, which are classified as S-L tectonites. Logarithmic flinn parameters(1.18–2.35) indicate elongate strain which approximates to plane strain. Kinematic vorticity numbers are 0.42–0.92 and 0.48–0.94, based on the polar Mohr diagram and the oblique foliation in quartz ribbons, respectively, suggesting that the ductile shear zone formed under general shear, or a combination of simple and pure shear. According to finite strain and kinematic vorticity analyses, the Erguna Fault is a lengthening-thinning ductile shear zone that formed by extension. The deformation behavior of minerals in the mylonites indicates that the fault was the site of three stages of deformation: an initial stage of middle- to deep-level, high-temperature shear, a post-stress recovery phase of high-temperature static recrystallization, and a final phase of low-temperature uplift and cooling. The 40Ar/39 Ar plateau ages of biotite from the granitic mylonites are 106.16 ± 0.79 and 111.55 ± 0.67 Ma, which constrain the timing of low-temperature uplift and cooling but are younger than the ages of metamorphic core complexes(MCCs) in the Transbaikalia-northeast Mongolia region. Using measured geological sections, microtectonics, estimates of finite strain and kinematic vorticity, and regional correlations and geochronology, we conclude that the Erguna Fault is an Early Cretaceous, NNE-trending, large-scale, sub-horizontal, and extensional ductile shear zone. It shares a similar tectonic background with the MCCs, volcanic fault basins, and large and super-large volcanic-hydrothermal deposits in Transbaikalia-northeast Mongolia and the western Great Khingan Mountains, all of which are the result of overthickened crust that gravitationally collapsed and extended in the Early Cretaceous after plate collision along the present-day Sino-Russia-Mongolia border tract.展开更多
基金supported by the National Natural Science Foundation of China(grant No.41571013)Project of China Geological Survey(grant No.12120114002101)
文摘Objective The nearly parallel N-S-trending rifts in southern Tibet represent the E-W extension of the Tibet Plateau. Most data which constrained the age of the extensional deformation come from isotopic dating of the dikes probably related to the activity of the nearly N-S faulting and micas from hydrothermal activity and the low- temperature thermochronology of plateau uplift. Previous research shows that there are at least three different ideas about the age of the rifts: (1) older than 16-12 Ma, (2) 14- 10 Ma, and (3) 8-4 Ma (Fig. la). For the old sedimentary strata represented the beginning of the rifting, the dating of the sediments helps to better define the initial rifting age.
基金financially supported by the National Natural Sciences Foundation of China (Grant No. 41371080, 41290252, and 41271077)"Strategic Priority Research Program (B)" of CAS (Grant No. XDB03030200)Training Plan for Outstanding Young Teachers in Higher Education Institutions of Guangdong (20140102)
文摘Poor bleaching is a significant problem for Optically Stimulated Luminescence(OSL) dating of glacial sediments. Five young glacial samples(including two modern analogues) from different depositional settings were collected beyond the Yingpu Glacier in the eastern Qinghai-Tibetan Plateau. De was determined using different OSL methods. The luminescence characteristics and dating results showed that the large aliquot quartz Blue Stimulated Luminescence(BSL) is more applicable than polymineral infrared stimulated luminescence(IRSL) method. Small aliquot quartz BSL results showed poor luminescence properties due to low luminescence sensitivity of quartz in this area. The dating results also indicated that glaciofluvial samples deposited close to ice margin(~40 m and ~700 m) and supraglacial debris dominated lateral moraine samples are relatively well-bleached, whereas samples from ground moraine and low terminal moraine were poorly bleached, probably due to containing subglacial and englacial debris. The residual doses of glaciofluvial and lateral moraine crest samples were below a few Gy and age overestimations were below a few hundred years. The ground moraine and low terminal moraine samples had residual doses as high as ~110 Gy, and ages were overestimated by ~15-17 ka.
基金This study was financially supported by the National Sciencc Foundation of China(No.49972035).
文摘The Dongchuang gold deposit in the Xiaoqinling area is an orogenic-type lodegold deposit. It is one of the few superlarge (>100 t Au) deposits in China. Although it has beenargued that it was formed in the Mesozoic, related isotopic age data have not been reported inprevious studies. Based on detailed geological study, the authors have carried out isotopic datingon various metallogenic generations. The ore-forming process of the Dongchuang gold deposit consistsof four stages: coarse-grained pyrite-bearing quartz veins (stage I), fine-grained pyrite-quartzveinlets (stage II), multi-sulfides (stage III) and carbonate-quartz veinlets (stage IV). Ar-Ardating on mineral separates of stages I, II and III yields plateau ages of 142.9 +- 2.9 Ma, 132.2 +-2.6 Ma and 128.3 +- 6.2 Ma, respectively. Sericite separates from stage II assemblage also yield anAr-Ar isochron age of 132.6 +- 2.7 Ma, similar to the Ar-Ar plateau age. These results suggest thatthe Dongchuang gold deposit was mainly formed during 143-128 Ma, coinciding with the authors'geological observations and previous hypothesis. This ore formation is coeval with theregional-tectonic transition from collisional compression to extension, strongly showing that thedecompression-geothermal increase regime during compression-to-extension transition is the mostconducive geodynamic environment to orogenic-type gold mineralization.
基金supported by National Basic Research Program of China(Grant No.2009CB219305)
文摘The Erguna Fault runs along the east bank of the Erguna River in NE China and is a large-scale ductile shear zone comprising granitic mylonites. This paper reports on the geometry, kinematic indicators, and 40Ar/39 Ar biotite ages of the granitic mylonites, to constrain the structural characteristics, forming age, and tectonic attribute of the Erguna ductile shear zone. The zone strikes NE and records a top-to-the-NW sense of shear. A mylonitic foliation and stretching lineation are well developed in the mylonites, which are classified as S-L tectonites. Logarithmic flinn parameters(1.18–2.35) indicate elongate strain which approximates to plane strain. Kinematic vorticity numbers are 0.42–0.92 and 0.48–0.94, based on the polar Mohr diagram and the oblique foliation in quartz ribbons, respectively, suggesting that the ductile shear zone formed under general shear, or a combination of simple and pure shear. According to finite strain and kinematic vorticity analyses, the Erguna Fault is a lengthening-thinning ductile shear zone that formed by extension. The deformation behavior of minerals in the mylonites indicates that the fault was the site of three stages of deformation: an initial stage of middle- to deep-level, high-temperature shear, a post-stress recovery phase of high-temperature static recrystallization, and a final phase of low-temperature uplift and cooling. The 40Ar/39 Ar plateau ages of biotite from the granitic mylonites are 106.16 ± 0.79 and 111.55 ± 0.67 Ma, which constrain the timing of low-temperature uplift and cooling but are younger than the ages of metamorphic core complexes(MCCs) in the Transbaikalia-northeast Mongolia region. Using measured geological sections, microtectonics, estimates of finite strain and kinematic vorticity, and regional correlations and geochronology, we conclude that the Erguna Fault is an Early Cretaceous, NNE-trending, large-scale, sub-horizontal, and extensional ductile shear zone. It shares a similar tectonic background with the MCCs, volcanic fault basins, and large and super-large volcanic-hydrothermal deposits in Transbaikalia-northeast Mongolia and the western Great Khingan Mountains, all of which are the result of overthickened crust that gravitationally collapsed and extended in the Early Cretaceous after plate collision along the present-day Sino-Russia-Mongolia border tract.