The “greatest lake period” means that the lakes are in the stage of their maximum areas. As the paleo lake shorelines are widely distributed in the lake basins on the Tibetan Plateau, the lake areas during the “gre...The “greatest lake period” means that the lakes are in the stage of their maximum areas. As the paleo lake shorelines are widely distributed in the lake basins on the Tibetan Plateau, the lake areas during the “greatest lake period” may be inferred by the last highest lake shorelines. They are several, even tens times larger than that at present. According to the analyses of tens of lakes on the Plateau, most dating data fell into the range of 40-25 ka BP, some lasted to 20 ka BP. It was corresponded to the stage 3 of marine isotope and interstitial of last glaciation. The occurrence of maximum areas of lakes marked the very humid period on the Plateau and was also related to the stronger summer monsoon during that period.展开更多
Objective Large numbers of archeological relics from the Neolithic period are widely distributed in all tributaries of the Yellow River. The early humans tended to reside along the river valleys, and developed small b...Objective Large numbers of archeological relics from the Neolithic period are widely distributed in all tributaries of the Yellow River. The early humans tended to reside along the river valleys, and developed small but characteristically decentralized ancient valley culture. It is universally acknowledged that the agriculture exchange between China and western countries and the moderate展开更多
In this paper, based on in-situ observational data of the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan'Plateau (CAMP-Tibet), structure of the Atmospheric Bou...In this paper, based on in-situ observational data of the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan'Plateau (CAMP-Tibet), structure of the Atmospheric Boundary Layer (ABL) was preliminarily studied during the dry and rainy seasons. The main results show: (a) Diurnal variation of the ABL is obvious over the northern Tibetan Plateau area. The height of the ABL is different with the season change, which ranges from 2,211 m to 4,430 m during the pre-monsoon season and from 1,006 m to 2,212 m during the monsoon season. The ABL height is higher during the dry period than during the rainyigeriod. (b) The humidity is lower during the dry period than during the rainy period, and there are reverse humidity during both periods. (c) Horizontal wind direction is mostly west during the dry period, east under the height of 2,500 m and west above the height of 2,500 m during the rainy period. The wind speed is low during both the rainy and dry periods in the lower ABL layer. The wind speed is stronger within the upper ABL during the dry period than dtn-ing the rainy period.展开更多
[ Objective] The study aimed to discuss analyze climate change characteristics and return periods of heavy precipitation in the northeast side of Qinghai-Tibet Plateau. [ Method] Based on the data of daily precipitati...[ Objective] The study aimed to discuss analyze climate change characteristics and return periods of heavy precipitation in the northeast side of Qinghai-Tibet Plateau. [ Method] Based on the data of daily precipitation from 1943 to 2008 in 6 representative meteorological stations in Linxia located in the northeast side of Qinghai-Tibet Plateau, the climate change characteristics of heavy precipitation were analyzed, and the return periods of heavy precipitation were calculated by Pearson-Ill probability distribution method. [ Result] Days of heavy precipitation in Linxia region in- creased conspicuously since the 1990s. The return periods of heavy precipitation in the six stations on August 20, 2008 were consistent with the re- sults of artificial estimation. [ Conclusion] The research could provide scientific references for the reasonable utilization of climate resources, disas- ter prevention and rational arranqement of anricultural plantina svstems in Linxia reaion.展开更多
Sedimentological, cyclic-stratigraphic, paleomagnetic, and clay-mineralogical studies on the early Oligocene Yaxicuo Group in the Hoh Xil Basin, the largest Cenozoic sedimentary basin in the hinterland of the Tibetan ...Sedimentological, cyclic-stratigraphic, paleomagnetic, and clay-mineralogical studies on the early Oligocene Yaxicuo Group in the Hoh Xil Basin, the largest Cenozoic sedimentary basin in the hinterland of the Tibetan Plateau, provide abundant information of paleoclimate changes. A 350-m thick section in the middle-lower Yaxicuo Group was analyzed to reveal the climatic history that occurred in the Hoh Xil region during the early Oligocene interval 31.30-30.35 Ma, dated with the paleomagnetic chronostratigraphy. The results indicate that arid and cold climate dominated the Hoh Xil region during the early Oligocene in general, being related to the global cooling and drying events that occurred in the earliest Oligocene. Within this period, relatively warm and wet climate accompanied by strong tectonic activity occurred in the 31.05-30.75 Ma interval; while arid and cold climate and relatively inactive tectonics occurred in the 31.30-31.05 and 30.75-30.35 Ma intervals. Furthermore, spectral analyses of high-temporal resolution paleoclimatic records show orbital periods including eccentricity, obliquity, and precession. It is concluded that paleoclimate changes during the early Oligocene in the Hoh Xil region were forced by both tectonic activity and orbital periods.展开更多
In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 40...In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 400km depth in the crust and upper mantle of Qinghai\|Tibet plateau and Its Adjacent Regions (22°~44°N,70°~110°E).The first step of the waveform inversion used involved the matching of the waveforms of fundamental and highermost Ravleigh waves with waveforms synthesized from stratified models;in the second stage,the 3\|D model was constructed by solve linear constrains equation. The major structural features inferred from the surface waveform inversions can be summarized as follows:(1) There is a great contrast between surface waveform through Qinghai—Thibet plateau and the others.Main frequency of the former is lower than the latter, which indicate the crust depth of Qinghai—Tibet plateau is deeper than the others. In addition,the amplitude of about 30s period and 50s period is lower than both sides,which implied these exist lower velocity layer at about 25km depth and about 50km depth in Qinghai—Tibet plateau Crust.The former is common,the latter was argued because resolution of most method can not prove it.展开更多
The karst landforms distributed on the Qinghai-Xizang (Tibet) Plateau can be genetically classed with the Tertiary underground karst, which were gradually exhumed to the surface with the uplift of the plateau during Q...The karst landforms distributed on the Qinghai-Xizang (Tibet) Plateau can be genetically classed with the Tertiary underground karst, which were gradually exhumed to the surface with the uplift of the plateau during Quaternary period. The relative deposits of the Tertiary palaeokarst processes, such as the residuum and speleothem, were discovered recently in the southern and southeastern fringe areas of the plateau, where has geological-currently been disintegrated by the headward erosion processes of the modern river systems. The major chemical components of the clay portion of the residuum consist mainly of SiO2, Al2O3 and Fe2O3. The clay minerals composition of the clay portion belongs to illite-kaolinite pattern for most of the residuum samples, and kaolinite-illite pattern for a few of the samples. It can be judged from the silicic acid index and the clay minerals composition that the formation of the residuum of the Plateau was in its initial phase. However, such a lower chemical weathering index only reflected the weathering degree in the bottom or lower parts of the lateritic weathering crust. The relatively intensive chemical weathering processes of the surface layers of the lateritic weathering crust could be logically speculated. The surface feature textures of quartz grains in the residuum were formed mainly by the chemical erosion, which revealed a long-term humid-tropical environment when the residuum and the palaeokarst formed.展开更多
基金National Key Project for Basic Research, G19980408 CAS's Project (KZ951-A1-204, KZ95T-06) for Tibetan Research IGSNRR Project
文摘The “greatest lake period” means that the lakes are in the stage of their maximum areas. As the paleo lake shorelines are widely distributed in the lake basins on the Tibetan Plateau, the lake areas during the “greatest lake period” may be inferred by the last highest lake shorelines. They are several, even tens times larger than that at present. According to the analyses of tens of lakes on the Plateau, most dating data fell into the range of 40-25 ka BP, some lasted to 20 ka BP. It was corresponded to the stage 3 of marine isotope and interstitial of last glaciation. The occurrence of maximum areas of lakes marked the very humid period on the Plateau and was also related to the stronger summer monsoon during that period.
基金financially supported by the National Science Foundation of China (grant No. 41571177)
文摘Objective Large numbers of archeological relics from the Neolithic period are widely distributed in all tributaries of the Yellow River. The early humans tended to reside along the river valleys, and developed small but characteristically decentralized ancient valley culture. It is universally acknowledged that the agriculture exchange between China and western countries and the moderate
基金under the auspices of the Chinese National Key Programme for Developing Basic Sciences (2010CB951703)the Chinese National Key Programme for Developing Basic Sciences (2005CB422003)the National Natural Science Foundation of China (41175008, 40810059006 and 40675012)
文摘In this paper, based on in-situ observational data of the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan'Plateau (CAMP-Tibet), structure of the Atmospheric Boundary Layer (ABL) was preliminarily studied during the dry and rainy seasons. The main results show: (a) Diurnal variation of the ABL is obvious over the northern Tibetan Plateau area. The height of the ABL is different with the season change, which ranges from 2,211 m to 4,430 m during the pre-monsoon season and from 1,006 m to 2,212 m during the monsoon season. The ABL height is higher during the dry period than during the rainyigeriod. (b) The humidity is lower during the dry period than during the rainy period, and there are reverse humidity during both periods. (c) Horizontal wind direction is mostly west during the dry period, east under the height of 2,500 m and west above the height of 2,500 m during the rainy period. The wind speed is low during both the rainy and dry periods in the lower ABL layer. The wind speed is stronger within the upper ABL during the dry period than dtn-ing the rainy period.
基金Supported by the Science and Technology Research Projects of Gansu Meteorological Bureau(2013-14)
文摘[ Objective] The study aimed to discuss analyze climate change characteristics and return periods of heavy precipitation in the northeast side of Qinghai-Tibet Plateau. [ Method] Based on the data of daily precipitation from 1943 to 2008 in 6 representative meteorological stations in Linxia located in the northeast side of Qinghai-Tibet Plateau, the climate change characteristics of heavy precipitation were analyzed, and the return periods of heavy precipitation were calculated by Pearson-Ill probability distribution method. [ Result] Days of heavy precipitation in Linxia region in- creased conspicuously since the 1990s. The return periods of heavy precipitation in the six stations on August 20, 2008 were consistent with the re- sults of artificial estimation. [ Conclusion] The research could provide scientific references for the reasonable utilization of climate resources, disas- ter prevention and rational arranqement of anricultural plantina svstems in Linxia reaion.
文摘Sedimentological, cyclic-stratigraphic, paleomagnetic, and clay-mineralogical studies on the early Oligocene Yaxicuo Group in the Hoh Xil Basin, the largest Cenozoic sedimentary basin in the hinterland of the Tibetan Plateau, provide abundant information of paleoclimate changes. A 350-m thick section in the middle-lower Yaxicuo Group was analyzed to reveal the climatic history that occurred in the Hoh Xil region during the early Oligocene interval 31.30-30.35 Ma, dated with the paleomagnetic chronostratigraphy. The results indicate that arid and cold climate dominated the Hoh Xil region during the early Oligocene in general, being related to the global cooling and drying events that occurred in the earliest Oligocene. Within this period, relatively warm and wet climate accompanied by strong tectonic activity occurred in the 31.05-30.75 Ma interval; while arid and cold climate and relatively inactive tectonics occurred in the 31.30-31.05 and 30.75-30.35 Ma intervals. Furthermore, spectral analyses of high-temporal resolution paleoclimatic records show orbital periods including eccentricity, obliquity, and precession. It is concluded that paleoclimate changes during the early Oligocene in the Hoh Xil region were forced by both tectonic activity and orbital periods.
文摘In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 400km depth in the crust and upper mantle of Qinghai\|Tibet plateau and Its Adjacent Regions (22°~44°N,70°~110°E).The first step of the waveform inversion used involved the matching of the waveforms of fundamental and highermost Ravleigh waves with waveforms synthesized from stratified models;in the second stage,the 3\|D model was constructed by solve linear constrains equation. The major structural features inferred from the surface waveform inversions can be summarized as follows:(1) There is a great contrast between surface waveform through Qinghai—Thibet plateau and the others.Main frequency of the former is lower than the latter, which indicate the crust depth of Qinghai—Tibet plateau is deeper than the others. In addition,the amplitude of about 30s period and 50s period is lower than both sides,which implied these exist lower velocity layer at about 25km depth and about 50km depth in Qinghai—Tibet plateau Crust.The former is common,the latter was argued because resolution of most method can not prove it.
基金National Natural Science Foundation of China No. 49901002 and No. 49371011
文摘The karst landforms distributed on the Qinghai-Xizang (Tibet) Plateau can be genetically classed with the Tertiary underground karst, which were gradually exhumed to the surface with the uplift of the plateau during Quaternary period. The relative deposits of the Tertiary palaeokarst processes, such as the residuum and speleothem, were discovered recently in the southern and southeastern fringe areas of the plateau, where has geological-currently been disintegrated by the headward erosion processes of the modern river systems. The major chemical components of the clay portion of the residuum consist mainly of SiO2, Al2O3 and Fe2O3. The clay minerals composition of the clay portion belongs to illite-kaolinite pattern for most of the residuum samples, and kaolinite-illite pattern for a few of the samples. It can be judged from the silicic acid index and the clay minerals composition that the formation of the residuum of the Plateau was in its initial phase. However, such a lower chemical weathering index only reflected the weathering degree in the bottom or lower parts of the lateritic weathering crust. The relatively intensive chemical weathering processes of the surface layers of the lateritic weathering crust could be logically speculated. The surface feature textures of quartz grains in the residuum were formed mainly by the chemical erosion, which revealed a long-term humid-tropical environment when the residuum and the palaeokarst formed.