Platelet-rich fibrin(PRF)is widely used in dentistry and other fields of medicine,and its use has become popular in dental implantology.In several published studies,PRF has been used as a barrier membrane.A barrier me...Platelet-rich fibrin(PRF)is widely used in dentistry and other fields of medicine,and its use has become popular in dental implantology.In several published studies,PRF has been used as a barrier membrane.A barrier membrane is a sheet of a certain material that acts as a biological and mechanical barrier against the invasion of cells that are not involved in bone formation,such as epithelial cells.Among the basic requirements of a'barrier membrane,occlusivity,stiffness,and space maintenance are the criteria that PRF primarily lacks;therefore,it does not fall under the category of barrier membranes.However,there is evidence that PRF membranes are useful in significantly improving wound healing.Does the PRF membrane act as a barrier?Should we think of adding or subtracting some points from the ideal requirements of a barrier membrane,or should we coin a new term or concept for PRF that will incorporate some features of a barrier membrane and be a combination of tissue engineering and biotechnology?This review is aimed at answering the basic question of whether the PRF membrane should be considered a barrier membrane or whether it is something more beyond the boundaries of a barrier membrane.展开更多
Introduction: Leukocyte and platelet-rich fibrin (L-PRF) is an emerging material in dentistry, however, there are controversies surrounding its effectiveness. Despite the amount of literature available, debates regard...Introduction: Leukocyte and platelet-rich fibrin (L-PRF) is an emerging material in dentistry, however, there are controversies surrounding its effectiveness. Despite the amount of literature available, debates regarding its effect continue. This review aims to summarize and clarify the data surrounding the use of L-PRF in promoting the healing of extraction sockets, which may offer a better outcome for future treatments. Purpose: The purpose of this review is to evaluate the current literature on the use of L-PRF in promoting the healing of extraction sockets, and to provide a comprehensive overview of the available evidence. Methods: A comprehensive computer-based search of databases such as PubMed, Medline, and Cochrane Library was conducted. Results: The results of this review suggest that L-PRF has shown promise in promoting early healing of extraction sockets, but the evidence for its effectiveness over a longer period is limited. Conclusion: Although L-PRF has shown promising results in the early healing periods, its effectiveness over a longer healing period cannot be confirmed based on the available data. More clinical trials with standardized protocols and consistent measurement methods are needed to establish the role of L-PRF in enhancing the healing of extraction sockets.展开更多
Introduction: Platelet Rich-Fibrin (PRF) is a biological matrix derived from a patient’s own blood, rich in growth factors and platelets. Its use in various periodontal and non-periodontal procedures is gaining recog...Introduction: Platelet Rich-Fibrin (PRF) is a biological matrix derived from a patient’s own blood, rich in growth factors and platelets. Its use in various periodontal and non-periodontal procedures is gaining recognition due to its potential in promoting tissue regeneration. The purpose of this review was to evaluate the benefits of using PRF in intra-bony defect regeneration, guided-bone regeneration, and sinus floor elevation. Methods: The study searched PubMed for manuscripts published between 2017 and 2022 to better understand the clinical and radiological effects of PRF. The manuscripts were divided into the following sections: intra-bony defect regeneration, guided-bone regeneration, and sinus floor elevation. Results: In intra-bony defects, PRF improved clinical and radiological parameters when compared with OFD alone, with a significant difference in wound healing at 7 days. In GBR, a CBCT evaluation shows no statistical difference between the PRF-autogenous bone complex group and the bovine bone-collagen membrane complex regarding volume change of the augmented bone with a 16% rate of bone loss following a 6-month healing period. Also, a slight increase in bone thickness has been seen when liquid PRF is used. In sinus floor elevation, results revealed no differences in graft volume between PRF group and control group at any of the evaluated time points. Although higher implant stability immediately postoperatively, higher new bone formation, the lesser amount of residual graft and earlier implant placement. Conclusion: Platelet Rich-Fibrin is widely accepted for use in periodontal surgery and dentistry due to its minimally invasive nature and low risk of adverse effects, with positive results in tissue regeneration. There is evidence that PRF leads to improved and faster healing, as well as cost-effective regenerative procedures compared to other treatments.展开更多
<b>Context and Aim:</b> Mesenchymal stem cells (MSCs) and platelet-rich fibrin (PRF) have emerged as ideal candidates for advanced therapies of various therapeutically-challenging diseases;however, their r...<b>Context and Aim:</b> Mesenchymal stem cells (MSCs) and platelet-rich fibrin (PRF) have emerged as ideal candidates for advanced therapies of various therapeutically-challenging diseases;however, their regenerative potential in diabetic foot ulcers (DFU) has not been well determined. In this study, we reviewed our clinical experience in mitigating chronic ulcer complications of diabetic foot through a conventional treatment of autologous adipose-derived MSCs embedded in PRF with pure PRF injections. <b>Materials and Methods:</b> The present study was carried out in 10 patients with an open DFU wound selected over a period of 1 year starting from April 2019. Patients were either injected with PRF alone (Group A) or injected with MSCs derived from adipose tissue (ADMSC) embedded in (PRF (Group B). <b>Results:</b> Patients in Group B had a better healing index when compared to Group A. <b>Conclusion:</b> Use of ADMSC embedded in PRF showed promising results to treat DFU.展开更多
Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment.Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell prol...Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment.Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell proliferation.In addition,there was a dose-dependent increase in Runt-related transcription factor-2 and bone morphogenetic protein-2 mRNA expression,as well as neuron-specific enolase and glial acidic protein.Results showed that platelet-rich fibrin promoted bone marrow mesenchymal stem cell proliferation and differentiation of osteoblast-like cells and neural cells in a dose-dependent manner.展开更多
BACKGROUND There are some challenges concerning immediate implant placement in the molar region.Platelet-rich fibrin(PRF),an autologous biomaterial,has been used widely for periodontal intra-bony defects,sinus augment...BACKGROUND There are some challenges concerning immediate implant placement in the molar region.Platelet-rich fibrin(PRF),an autologous biomaterial,has been used widely for periodontal intra-bony defects,sinus augmentation,socket preservation,and gingival recession.However,the literature remains scarce for reports on immediate implants with PRF,particularly in the case of fresh molar extraction socket.CASE SUMMARY The patient was a 43-year-old woman with maxillary molar vertical crown-root fracture.She underwent flapless immediate implant placement into the fresh molar socket with PRF.At the follow-up visit 15 d post procedure,the vascularization of soft tissue was visible.There was no swelling or pain after the surgery.Six months postoperatively,the regeneration of bone and soft tissues was visible.Subsequently,the definitive restoration was placed.The patient was satisfied with the aesthetic outcomes.CONCLUSION The flapless immediate implant placement into the fresh molar socket with PRF is a feasible procedure.This case report demonstrates that PRF promotes bone and soft tissue regeneration apart from having an enhanced anti-inflammatory ability.Furthermore,the procedure involves a minimally invasive technique,thus reducing the surgical complexity.展开更多
BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide.These defects generally result from severe trauma or resection of a whole large tumour.Autologous bone graft...BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide.These defects generally result from severe trauma or resection of a whole large tumour.Autologous bone grafts are the current gold standard for the reconstruction of such defects.However,due to increased patient morbidity and the need for a second operative site,other lines of treatment should be introduced.To find alternative unconventional therapies to manage such defects,bone tissue engineering using a combination of suitable bioactive factors,cells,and biocompatible scaffolds offers a promising new approach for bone regeneration.AIM To evaluate the healing capacity of platelet-rich fibrin(PRF)membranes seeded with allogeneic mesenchymal bone marrow-derived stem cells(BMSCs)on critically sized mandibular defects in a rat model.METHODS Sixty-three Sprague Dawley rats were subjected to bilateral bone defects of critical size in the mandibles created by a 5-mm diameter trephine bur.Rats were allocated to three equal groups of 21 rats each.Group I bone defects were irrigated with normal saline and designed as negative controls.Defects of group II were grafted with PRF membranes and served as positive controls,while defects of group III were grafted with PRF membranes seeded with allogeneic BMSCs.Seven rats from each group were killed at 1,2 and 4 wk.The mandibles were dissected and prepared for routine haematoxylin and eosin(HE)staining,Masson's trichrome staining and CD68 immunohistochemical staining.RESULTS Four weeks postoperatively,the percentage area of newly formed bone was significantly higher in group III(0.88±0.02)than in groups I(0.02±0.00)and II(0.60±0.02).The amount of granulation tissue formation was lower in group III(0.12±0.02)than in groups I(0.20±0.02)and II(0.40±0.02).The number of inflammatory cells was lower in group III(0.29±0.03)than in groups I(4.82±0.08)and II(3.09±0.07).CONCLUSION Bone regenerative quality of critically sized mandibular bone defects in rats was better promoted by PRF membranes seeded with BMSCs than with PRF membranes alone.展开更多
Therapies such as direct tension-free microsurgical repair or transplantation of a nerve autograft,are nowadays used to treat traumatic peripheral nerve injuries(PNI),focused on the enhancement of the intrinsic rege...Therapies such as direct tension-free microsurgical repair or transplantation of a nerve autograft,are nowadays used to treat traumatic peripheral nerve injuries(PNI),focused on the enhancement of the intrinsic regenerative potential of injured axons.However,these therapies fail to recreate the suitable cellular and molecular microenvironment of peripheral nerve repair and in some cases,the functional recovery of nerve injuries is incomplete.Thus,new biomedical engineering strategies based on tissue engineering approaches through molecular intervention and scaffolding offer promising outcomes on the field.In this sense,evidence is accumulating in both,preclinical and clinical settings,indicating that platelet-rich plasma products,and fibrin scaffold obtained from this technology,hold an important therapeutic potential as a neuroprotective,neurogenic and neuroinflammatory therapeutic modulator system,as well as enhancing the sensory and motor functional nerve muscle unit recovery.展开更多
Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed ...Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed in suspension at a density of 1 x 106 cells/mL, prior to introduction into a poly (lactic-co-glycolic acid) conduit. Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group). Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group). Twelve weeks after implantation, toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group. Fluoro-gold retrograde labeling revealed that the number of Fluoro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group. Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the platelet-rich plasma group compared with the fibrin group. These results indicate that autologous platelet-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote perJpheral nerve regeneration.展开更多
文摘Platelet-rich fibrin(PRF)is widely used in dentistry and other fields of medicine,and its use has become popular in dental implantology.In several published studies,PRF has been used as a barrier membrane.A barrier membrane is a sheet of a certain material that acts as a biological and mechanical barrier against the invasion of cells that are not involved in bone formation,such as epithelial cells.Among the basic requirements of a'barrier membrane,occlusivity,stiffness,and space maintenance are the criteria that PRF primarily lacks;therefore,it does not fall under the category of barrier membranes.However,there is evidence that PRF membranes are useful in significantly improving wound healing.Does the PRF membrane act as a barrier?Should we think of adding or subtracting some points from the ideal requirements of a barrier membrane,or should we coin a new term or concept for PRF that will incorporate some features of a barrier membrane and be a combination of tissue engineering and biotechnology?This review is aimed at answering the basic question of whether the PRF membrane should be considered a barrier membrane or whether it is something more beyond the boundaries of a barrier membrane.
文摘Introduction: Leukocyte and platelet-rich fibrin (L-PRF) is an emerging material in dentistry, however, there are controversies surrounding its effectiveness. Despite the amount of literature available, debates regarding its effect continue. This review aims to summarize and clarify the data surrounding the use of L-PRF in promoting the healing of extraction sockets, which may offer a better outcome for future treatments. Purpose: The purpose of this review is to evaluate the current literature on the use of L-PRF in promoting the healing of extraction sockets, and to provide a comprehensive overview of the available evidence. Methods: A comprehensive computer-based search of databases such as PubMed, Medline, and Cochrane Library was conducted. Results: The results of this review suggest that L-PRF has shown promise in promoting early healing of extraction sockets, but the evidence for its effectiveness over a longer period is limited. Conclusion: Although L-PRF has shown promising results in the early healing periods, its effectiveness over a longer healing period cannot be confirmed based on the available data. More clinical trials with standardized protocols and consistent measurement methods are needed to establish the role of L-PRF in enhancing the healing of extraction sockets.
文摘Introduction: Platelet Rich-Fibrin (PRF) is a biological matrix derived from a patient’s own blood, rich in growth factors and platelets. Its use in various periodontal and non-periodontal procedures is gaining recognition due to its potential in promoting tissue regeneration. The purpose of this review was to evaluate the benefits of using PRF in intra-bony defect regeneration, guided-bone regeneration, and sinus floor elevation. Methods: The study searched PubMed for manuscripts published between 2017 and 2022 to better understand the clinical and radiological effects of PRF. The manuscripts were divided into the following sections: intra-bony defect regeneration, guided-bone regeneration, and sinus floor elevation. Results: In intra-bony defects, PRF improved clinical and radiological parameters when compared with OFD alone, with a significant difference in wound healing at 7 days. In GBR, a CBCT evaluation shows no statistical difference between the PRF-autogenous bone complex group and the bovine bone-collagen membrane complex regarding volume change of the augmented bone with a 16% rate of bone loss following a 6-month healing period. Also, a slight increase in bone thickness has been seen when liquid PRF is used. In sinus floor elevation, results revealed no differences in graft volume between PRF group and control group at any of the evaluated time points. Although higher implant stability immediately postoperatively, higher new bone formation, the lesser amount of residual graft and earlier implant placement. Conclusion: Platelet Rich-Fibrin is widely accepted for use in periodontal surgery and dentistry due to its minimally invasive nature and low risk of adverse effects, with positive results in tissue regeneration. There is evidence that PRF leads to improved and faster healing, as well as cost-effective regenerative procedures compared to other treatments.
文摘<b>Context and Aim:</b> Mesenchymal stem cells (MSCs) and platelet-rich fibrin (PRF) have emerged as ideal candidates for advanced therapies of various therapeutically-challenging diseases;however, their regenerative potential in diabetic foot ulcers (DFU) has not been well determined. In this study, we reviewed our clinical experience in mitigating chronic ulcer complications of diabetic foot through a conventional treatment of autologous adipose-derived MSCs embedded in PRF with pure PRF injections. <b>Materials and Methods:</b> The present study was carried out in 10 patients with an open DFU wound selected over a period of 1 year starting from April 2019. Patients were either injected with PRF alone (Group A) or injected with MSCs derived from adipose tissue (ADMSC) embedded in (PRF (Group B). <b>Results:</b> Patients in Group B had a better healing index when compared to Group A. <b>Conclusion:</b> Use of ADMSC embedded in PRF showed promising results to treat DFU.
文摘Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment.Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell proliferation.In addition,there was a dose-dependent increase in Runt-related transcription factor-2 and bone morphogenetic protein-2 mRNA expression,as well as neuron-specific enolase and glial acidic protein.Results showed that platelet-rich fibrin promoted bone marrow mesenchymal stem cell proliferation and differentiation of osteoblast-like cells and neural cells in a dose-dependent manner.
基金Supported by Interdisciplinary Project for Ph.D. students of Jilin University,No.10183201846 X.S
文摘BACKGROUND There are some challenges concerning immediate implant placement in the molar region.Platelet-rich fibrin(PRF),an autologous biomaterial,has been used widely for periodontal intra-bony defects,sinus augmentation,socket preservation,and gingival recession.However,the literature remains scarce for reports on immediate implants with PRF,particularly in the case of fresh molar extraction socket.CASE SUMMARY The patient was a 43-year-old woman with maxillary molar vertical crown-root fracture.She underwent flapless immediate implant placement into the fresh molar socket with PRF.At the follow-up visit 15 d post procedure,the vascularization of soft tissue was visible.There was no swelling or pain after the surgery.Six months postoperatively,the regeneration of bone and soft tissues was visible.Subsequently,the definitive restoration was placed.The patient was satisfied with the aesthetic outcomes.CONCLUSION The flapless immediate implant placement into the fresh molar socket with PRF is a feasible procedure.This case report demonstrates that PRF promotes bone and soft tissue regeneration apart from having an enhanced anti-inflammatory ability.Furthermore,the procedure involves a minimally invasive technique,thus reducing the surgical complexity.
文摘BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide.These defects generally result from severe trauma or resection of a whole large tumour.Autologous bone grafts are the current gold standard for the reconstruction of such defects.However,due to increased patient morbidity and the need for a second operative site,other lines of treatment should be introduced.To find alternative unconventional therapies to manage such defects,bone tissue engineering using a combination of suitable bioactive factors,cells,and biocompatible scaffolds offers a promising new approach for bone regeneration.AIM To evaluate the healing capacity of platelet-rich fibrin(PRF)membranes seeded with allogeneic mesenchymal bone marrow-derived stem cells(BMSCs)on critically sized mandibular defects in a rat model.METHODS Sixty-three Sprague Dawley rats were subjected to bilateral bone defects of critical size in the mandibles created by a 5-mm diameter trephine bur.Rats were allocated to three equal groups of 21 rats each.Group I bone defects were irrigated with normal saline and designed as negative controls.Defects of group II were grafted with PRF membranes and served as positive controls,while defects of group III were grafted with PRF membranes seeded with allogeneic BMSCs.Seven rats from each group were killed at 1,2 and 4 wk.The mandibles were dissected and prepared for routine haematoxylin and eosin(HE)staining,Masson's trichrome staining and CD68 immunohistochemical staining.RESULTS Four weeks postoperatively,the percentage area of newly formed bone was significantly higher in group III(0.88±0.02)than in groups I(0.02±0.00)and II(0.60±0.02).The amount of granulation tissue formation was lower in group III(0.12±0.02)than in groups I(0.20±0.02)and II(0.40±0.02).The number of inflammatory cells was lower in group III(0.29±0.03)than in groups I(4.82±0.08)and II(3.09±0.07).CONCLUSION Bone regenerative quality of critically sized mandibular bone defects in rats was better promoted by PRF membranes seeded with BMSCs than with PRF membranes alone.
文摘Therapies such as direct tension-free microsurgical repair or transplantation of a nerve autograft,are nowadays used to treat traumatic peripheral nerve injuries(PNI),focused on the enhancement of the intrinsic regenerative potential of injured axons.However,these therapies fail to recreate the suitable cellular and molecular microenvironment of peripheral nerve repair and in some cases,the functional recovery of nerve injuries is incomplete.Thus,new biomedical engineering strategies based on tissue engineering approaches through molecular intervention and scaffolding offer promising outcomes on the field.In this sense,evidence is accumulating in both,preclinical and clinical settings,indicating that platelet-rich plasma products,and fibrin scaffold obtained from this technology,hold an important therapeutic potential as a neuroprotective,neurogenic and neuroinflammatory therapeutic modulator system,as well as enhancing the sensory and motor functional nerve muscle unit recovery.
基金supported by the High Education Development Foundation of Shandong Province,No.J11LF22
文摘Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed in suspension at a density of 1 x 106 cells/mL, prior to introduction into a poly (lactic-co-glycolic acid) conduit. Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group). Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group). Twelve weeks after implantation, toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group. Fluoro-gold retrograde labeling revealed that the number of Fluoro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group. Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the platelet-rich plasma group compared with the fibrin group. These results indicate that autologous platelet-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote perJpheral nerve regeneration.