The current development of precision plastic injection molding machines mainly focuses on how to save material and improve precision, but the two aims contradict each other. For a clamp unit, clamping precision improv...The current development of precision plastic injection molding machines mainly focuses on how to save material and improve precision, but the two aims contradict each other. For a clamp unit, clamping precision improving depends on the design quality of the stationary platen. Compared with the parametric design of stationary platen, structural scheme design could obtain the optimization model with double objectives and multi-constraints. In this paper, a SE-160 precision plastic injection molding machine with 1600 kN clamping force is selected as the subject in the case study. During the motion of mold closing and opening, the stationary platen of SE-160 is subjected to a cyclic loading, which would cause the fatigue rupture of the tie bars in periodically long term operations. In order to reduce the deflection of the stationary platen, the FEA method is introduced to optimize the structure of the stationary platen. Firstly, an optimal topology model is established by variable density method. Then, structural topology optimizations of the stationary platen are done with the removable material from 50%, 60% to 70%. Secondly, the other two recommended optimization schemes are given and compared with the original structure. The result of performances comparison shows that the scheme II of the platen is the best one. By choosing the best alternative, the volume and the local maximal stress of the platen could be decreased, corresponding to cost-saving material and better mechanical properties. This paper proposes a structural optimization design scheme, which can save the material as well as improve the clamping precision of the precision plastic injection molding machine.展开更多
Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diamete...Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diameter, is larger than 1, there exists two-dimensional tensile stress in the deformed body, when the ratio is smaller than 1, there exists shear stress in static hydraulic zone. The former breaks through the theory that there is three-dimensional compressive stress irrespective of any ratio of height to diameter. The latter satisfactorily explains the mechanism of layer-like cracks in disk-shaped forgings and the flanges of forged gear axles. The representation of the two models makes the upsetting, theory into correct and perfect stage.展开更多
In an injection moulding process, the parallelism b et ween the tie bars of the injection moulding machine is very important as it will affect the mould closing and clamping system. In recent years, more and more ho t...In an injection moulding process, the parallelism b et ween the tie bars of the injection moulding machine is very important as it will affect the mould closing and clamping system. In recent years, more and more ho t runner systems are being applied in the moulding industry to save material and decrease the losses of injection pressure. Heat transfer from hot runner system from the fixed half which is secured in the fix machine platen could transmit s o much heat that it may cause high temperature differential between the machine fix platen and moving platen. This will cause the tie bar to become unparallel. Part quality will be compromised and the wear of the tie bar will be excessive. Overhaul of the tie bar may be necessary after a short period of time which is c ostly. This raises the need to analyze the heat transfer from the hot runner sys tem to the machine fix platen and the methods of isolating or minimizing the hea t transfer. In this case study, a photo lens article mould was used. The mould w as built with a direct hot runner nozzle system. Heat conduction from hot runner and machine screw to machine fix platen were studied based on either using high temperature heat insulating plate put in placed between the mould and the mould ing machine fix platen or drill cooling channels in the front mould clamping pla te. The high temperature insulator is very costly as it is made out of glass re inforced polymer composite material. Experimental results were obtained and anal yzed to find the best method to minimize the unwanted heat transfer using the ch eapest and most effective method.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51205350)Hong Kong Scholars Program of China(Grant No.XJ2013015)Zhejiang Provincial Research Program of Public Welfare Technology Application of China(Grant No.2013C31027)
文摘The current development of precision plastic injection molding machines mainly focuses on how to save material and improve precision, but the two aims contradict each other. For a clamp unit, clamping precision improving depends on the design quality of the stationary platen. Compared with the parametric design of stationary platen, structural scheme design could obtain the optimization model with double objectives and multi-constraints. In this paper, a SE-160 precision plastic injection molding machine with 1600 kN clamping force is selected as the subject in the case study. During the motion of mold closing and opening, the stationary platen of SE-160 is subjected to a cyclic loading, which would cause the fatigue rupture of the tie bars in periodically long term operations. In order to reduce the deflection of the stationary platen, the FEA method is introduced to optimize the structure of the stationary platen. Firstly, an optimal topology model is established by variable density method. Then, structural topology optimizations of the stationary platen are done with the removable material from 50%, 60% to 70%. Secondly, the other two recommended optimization schemes are given and compared with the original structure. The result of performances comparison shows that the scheme II of the platen is the best one. By choosing the best alternative, the volume and the local maximal stress of the platen could be decreased, corresponding to cost-saving material and better mechanical properties. This paper proposes a structural optimization design scheme, which can save the material as well as improve the clamping precision of the precision plastic injection molding machine.
基金National Natural Science Foundation of China(No.59235101)
文摘Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diameter, is larger than 1, there exists two-dimensional tensile stress in the deformed body, when the ratio is smaller than 1, there exists shear stress in static hydraulic zone. The former breaks through the theory that there is three-dimensional compressive stress irrespective of any ratio of height to diameter. The latter satisfactorily explains the mechanism of layer-like cracks in disk-shaped forgings and the flanges of forged gear axles. The representation of the two models makes the upsetting, theory into correct and perfect stage.
文摘In an injection moulding process, the parallelism b et ween the tie bars of the injection moulding machine is very important as it will affect the mould closing and clamping system. In recent years, more and more ho t runner systems are being applied in the moulding industry to save material and decrease the losses of injection pressure. Heat transfer from hot runner system from the fixed half which is secured in the fix machine platen could transmit s o much heat that it may cause high temperature differential between the machine fix platen and moving platen. This will cause the tie bar to become unparallel. Part quality will be compromised and the wear of the tie bar will be excessive. Overhaul of the tie bar may be necessary after a short period of time which is c ostly. This raises the need to analyze the heat transfer from the hot runner sys tem to the machine fix platen and the methods of isolating or minimizing the hea t transfer. In this case study, a photo lens article mould was used. The mould w as built with a direct hot runner nozzle system. Heat conduction from hot runner and machine screw to machine fix platen were studied based on either using high temperature heat insulating plate put in placed between the mould and the mould ing machine fix platen or drill cooling channels in the front mould clamping pla te. The high temperature insulator is very costly as it is made out of glass re inforced polymer composite material. Experimental results were obtained and anal yzed to find the best method to minimize the unwanted heat transfer using the ch eapest and most effective method.