In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of inc...In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of incremental dynamic analysis results for both directions of the platform shows that the lateral strength of the platform in the float over direction is less than its lateral strength in other direction. Dynamic characteristics measurement of a scale model of platform was also performed using forced vibration tests. From experimental measurement of the scaled model, it was observed that dynamic characteristic of the platform is different in the float over direction compared to the other direction. Therefore, a new offshore installed bracing system for the float over direction was proposed for improvement of seismic performance of this type of platform. Finally, the structure with the modified system was assessed using the probabilistic seismic assessment method as well as experimental measurement of its dynamic characteristics. It was observed that the proposed offshore installed bracing system improves the performance of platforms subjected to strong ground motion.展开更多
Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the ...Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the development patterns of various types of Cambrian platform margin mound-shoal complexes and paleogeomorphology in the Gucheng area of Tarim Basin have been examined.The Cambrian platform margin mound-shoal complex is divided into mound base,mound core,mound front,mound back and mound flat microfacies,which are composed of dolomites of seven textures with facies indication.The different paleogeomorphology before the deposition of mound-shoal complex in each period was reconstructed,and three types of mound-shoal complex sedimentary models corresponding to the paleogeomorphologies of four stages were established:namely,the first stage of gentle slope symmetric accretion type,the second stage of steep slope asymmetric accretion type and the third and fourth stages of steep slope asymmetric progradation type.Their microfacies are respectively characterized by-mound base-mound back+(small)mound core+mound front-mound flat"symmetric vertical accretion structure,"mound base-(large)mound core+mound front-mound flat"asymmetric vertical accretion structure,"mound base-(small)mound core+mound front-mound flat"asymmetric lateral progradation structure.With most developed favorable reservoir facies belt,the steep slope asymmetric accretion type mound-shoal complex with the characteristics of"large mound and large shoal"is the exploration target for oil and gas reservoir.展开更多
Based on the seismic, logging, drilling and other data, the distribution, structural types and mound-shoal hydrocarbon accumulation characteristics of platform margins of the Sinian Dengying Formation in the Deyang-An...Based on the seismic, logging, drilling and other data, the distribution, structural types and mound-shoal hydrocarbon accumulation characteristics of platform margins of the Sinian Dengying Formation in the Deyang-Anyue Rift and its periphery were analyzed. Four types of platform margins are developed in the Dengying Formation, i.e., single-stage fault-controlled platform margin, multi-stage fault-controlled platform margin, gentle slope platform margin, and overlapping platform margin. In the Gaoshiti West-Weiyuan East area, single-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in nearly NEE direction and are shielded by faults and mudstones, forming fault-controlled–lithologic traps. In the Lezhi-Penglai area, independent and multi-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in NE direction and are controlled by synsedimentary faults;the mound-shoal complexes are aggraded and built on the hanging walls of the faults, and they are shielded by tight intertidal belts and the Lower Cambrian source rocks in multiple directions, forming fault-controlled–lithologic and other composite traps. In the Weiyuan-Ziyang area, gentle slope platform margins are developed in the Deng 2 Member, which trend in NW direction;the mound-shoal complexes are mostly thin interbeds as continuous bands and shielded by tight intertidal belts in the updip direction, forming lithologic traps. In the Gaoshiti-Moxi-Yanting area, overlapping platform margins are developed in the Deng 2 and Deng 4 members;the mound-shoal complexes are aggraded and overlaid to create platform margin buildup with a huge thickness and sealed by tight intertidal belts and the Lower Cambrian mudstones in the updip direction, forming large-scale lithologic traps on the north slope of the Central Sichuan Paleouplift. To summarize, the mound-shoal complexes on the platform margins in the Dengying Formation in the Penglai-Zhongjiang area, Moxi North-Yanting area and Weiyuan-Ziyang area are large in scale, with estimated resources of 1.58×1012 m3, and they will be the key targets for the future exploration of the Dengying Formation in the Sichuan Basin.展开更多
基金sponsored by POGC (Pars Oil and Gas Company,No.132 "Investigation of Structural Health Monitoring of Steel Jacket Offshore Platforms")The financial support of POGC is gratefully acknowledged
文摘In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of incremental dynamic analysis results for both directions of the platform shows that the lateral strength of the platform in the float over direction is less than its lateral strength in other direction. Dynamic characteristics measurement of a scale model of platform was also performed using forced vibration tests. From experimental measurement of the scaled model, it was observed that dynamic characteristic of the platform is different in the float over direction compared to the other direction. Therefore, a new offshore installed bracing system for the float over direction was proposed for improvement of seismic performance of this type of platform. Finally, the structure with the modified system was assessed using the probabilistic seismic assessment method as well as experimental measurement of its dynamic characteristics. It was observed that the proposed offshore installed bracing system improves the performance of platforms subjected to strong ground motion.
基金Supported by the National Natural Science Foundation of China(41772103)China National Science and Technology Major Project(2016ZX05007-002)Petrochina Science and Technology Major Project(2016E-0204)。
文摘Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the development patterns of various types of Cambrian platform margin mound-shoal complexes and paleogeomorphology in the Gucheng area of Tarim Basin have been examined.The Cambrian platform margin mound-shoal complex is divided into mound base,mound core,mound front,mound back and mound flat microfacies,which are composed of dolomites of seven textures with facies indication.The different paleogeomorphology before the deposition of mound-shoal complex in each period was reconstructed,and three types of mound-shoal complex sedimentary models corresponding to the paleogeomorphologies of four stages were established:namely,the first stage of gentle slope symmetric accretion type,the second stage of steep slope asymmetric accretion type and the third and fourth stages of steep slope asymmetric progradation type.Their microfacies are respectively characterized by-mound base-mound back+(small)mound core+mound front-mound flat"symmetric vertical accretion structure,"mound base-(large)mound core+mound front-mound flat"asymmetric vertical accretion structure,"mound base-(small)mound core+mound front-mound flat"asymmetric lateral progradation structure.With most developed favorable reservoir facies belt,the steep slope asymmetric accretion type mound-shoal complex with the characteristics of"large mound and large shoal"is the exploration target for oil and gas reservoir.
基金Supported by the Science and Technology Project of PetroChina (2021DJ0605)。
文摘Based on the seismic, logging, drilling and other data, the distribution, structural types and mound-shoal hydrocarbon accumulation characteristics of platform margins of the Sinian Dengying Formation in the Deyang-Anyue Rift and its periphery were analyzed. Four types of platform margins are developed in the Dengying Formation, i.e., single-stage fault-controlled platform margin, multi-stage fault-controlled platform margin, gentle slope platform margin, and overlapping platform margin. In the Gaoshiti West-Weiyuan East area, single-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in nearly NEE direction and are shielded by faults and mudstones, forming fault-controlled–lithologic traps. In the Lezhi-Penglai area, independent and multi-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in NE direction and are controlled by synsedimentary faults;the mound-shoal complexes are aggraded and built on the hanging walls of the faults, and they are shielded by tight intertidal belts and the Lower Cambrian source rocks in multiple directions, forming fault-controlled–lithologic and other composite traps. In the Weiyuan-Ziyang area, gentle slope platform margins are developed in the Deng 2 Member, which trend in NW direction;the mound-shoal complexes are mostly thin interbeds as continuous bands and shielded by tight intertidal belts in the updip direction, forming lithologic traps. In the Gaoshiti-Moxi-Yanting area, overlapping platform margins are developed in the Deng 2 and Deng 4 members;the mound-shoal complexes are aggraded and overlaid to create platform margin buildup with a huge thickness and sealed by tight intertidal belts and the Lower Cambrian mudstones in the updip direction, forming large-scale lithologic traps on the north slope of the Central Sichuan Paleouplift. To summarize, the mound-shoal complexes on the platform margins in the Dengying Formation in the Penglai-Zhongjiang area, Moxi North-Yanting area and Weiyuan-Ziyang area are large in scale, with estimated resources of 1.58×1012 m3, and they will be the key targets for the future exploration of the Dengying Formation in the Sichuan Basin.