A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven botto...A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM.展开更多
Visual media have dominated sensory communications for decades,and the resulting“visual hegemony”leads to the call for the“auditory return”in order to achieve a holistic balance in cultural acceptance.Romance of t...Visual media have dominated sensory communications for decades,and the resulting“visual hegemony”leads to the call for the“auditory return”in order to achieve a holistic balance in cultural acceptance.Romance of the Three Kingdoms,a classic literary work in China,has received significant attention and promotion from leading audio platforms.However,the commercialization of digital audio publishing faces unprecedented challenges due to the mismatch between the dissemination of long-form content on digital audio platforms and the current trend of short and fast information reception.Drawing on the Business Model Canvas Theory and taking Romance of the Three Kingdoms as the main focus of analysis,this paper argues that the construction of a business model for the audio publishing of classical books should start from three aspects:the user evaluation of digital audio platforms,the establishment of value propositions based on the“creative transformation and innovative development”principle,and the improvement of the audio publishing infrastructure to ensure the healthy operation and development of the digital audio platforms and consequently improve their current state of development and expand the boundaries of cultural heritage.展开更多
Leveraging the Baidu Qianfan model platform,this paper designs and implements a highly efficient and accurate scoring system for subjective questions,focusing primarily on questions in the field of computer network te...Leveraging the Baidu Qianfan model platform,this paper designs and implements a highly efficient and accurate scoring system for subjective questions,focusing primarily on questions in the field of computer network technology.The system enhances the foundational model by utilizing Qianfan’s training tools and integrating advanced techniques,such as supervised fine-tuning.In the data preparation phase,a comprehensive collection of subjective data related to computer network technology is gathered,cleaned,and labeled.During model training and evaluation,optimal hyperparameters and tuning strategies are applied,resulting in a model capable of scoring with high accuracy.Evaluation results demonstrate that the proposed model performs well across multiple dimensions-content,expression,and development scores-yielding results comparable to those of manual scoring.展开更多
Objective:To analyze the technical indexes of students’online learning behavior analysis based on Kirkman’s evaluation model,sort out the basic indexes of online learning behavior,and extract scientific and efficien...Objective:To analyze the technical indexes of students’online learning behavior analysis based on Kirkman’s evaluation model,sort out the basic indexes of online learning behavior,and extract scientific and efficient evaluation indexes of online learning effect through statistical analysis.Methods:The online learning behavior data of Physiology of nursing students from 2021-2023 and the first semester of 22 nursing classes(3 and 4)were collected and analyzed.The preset learning behavior indexes were analyzed by multi-dimensional analysis and a correlation analysis was conducted between the indexes and the final examination scores to screen for the dominant important indexes for online learning effect evaluation.Results:The study found that the demand for online learning of nursing students from 2021-2023 increased and the effect was statistically significant.Compared with the stage assessment results,the online learning effect was statistically significant.Conclusion:The main indicators for evaluating and classifying online learning behaviors were summarized.These two indicators can help teachers predict which part of students need learning intervention,optimize the teaching process,and help students improve their learning behavior and academic performance.展开更多
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo...Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.展开更多
Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cel...Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.展开更多
Virtual simulation is an economical and efficient method in mechanical system design. Numerical modeling of a spar platform, tethered by a mooring cable with a spherical joint is developed for the dynamic simulation o...Virtual simulation is an economical and efficient method in mechanical system design. Numerical modeling of a spar platform, tethered by a mooring cable with a spherical joint is developed for the dynamic simulation of the floating structure in ocean. The geometry modeling of the spar is created using finite element methods. The submerged part of the spar bears the buoyancy, hydrodynamic drag force, and effect of the added mass and Froude-Krylov force. Strip theory is used to sum up the forces acting on the elements. The geometry modeling of the cable is established based on the lumped-mass-and-spring modeling through which the cable is divided into 10 elements. A new element-fixed local frame is used, which is created by the element orientation vector and relative velocity of the fluid, to express the loads acting on the cable. The bottom of the cable is fixed on the seabed by spring forces, while the top of the cable is connected to the bottom of the spar platform by a modified spherical joint. This system suffers the propagating wave and current in the X-direction and the linear wave theory is applied for setting of the propagating wave. Based on the numerical modeling, the displacement-load relationships are analyzed, and the simulation results of the numerical modeling are compared with those by the commercial simulation code, Proteus DS. The comparison indicates that the numerical modeling of the spar platform tethered by a mooring cable is well developed, which provides an instruction for the optimization of a floating structure tethered by a mooring cable system.展开更多
The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historic...The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy.展开更多
Platform planning is one of the important problems in the command and control(C2) field. Hereto, we analyze the platform planning problem and present nonlinear optimal model aiming at maximizing the task completion qu...Platform planning is one of the important problems in the command and control(C2) field. Hereto, we analyze the platform planning problem and present nonlinear optimal model aiming at maximizing the task completion qualities. Firstly, we take into account the relation among tasks and build the single task nonlinear optimal model with a set of platform constraints. The Lagrange relaxation method and the pruning strategy are used to solve the model. Secondly, this paper presents optimization-based planning algorithms for efficiently allocating platforms to multiple tasks. To achieve the balance of the resource assignments among tasks, the m-best assignment algorithm and the pair-wise exchange(PWE)method are used to maximize multiple tasks completion qualities.Finally, a series of experiments are designed to verify the superiority and effectiveness of the proposed model and algorithms.展开更多
The identification of variations in the dynamic behavior of structures is an important subject in structural integrity assessment.Improvement and servicing of offshore platforms in the marine environment with constant...The identification of variations in the dynamic behavior of structures is an important subject in structural integrity assessment.Improvement and servicing of offshore platforms in the marine environment with constant changing,requires understanding the real behavior of these structures to prevent possible failure.In this work,empirical and numerical models of jacket structure are investigated.A test on experimental modal analysis is accomplished to acquire the response of structure and a mathematical model of the jacket structure is also performed.Then,based on the control theory using developed reduction system,the matrices of the platform model is calibrated and updated.The current methodology can be applied to prepare the finite element model to be more adaptable to the empirical model.Calibrated results with the proposed approach in this paper are very close to those of the actual model and also this technique leads to a reduction in the amount of calculations and expenses.The research clearly confirms that the dynamic behavior of fixed marine structures should be designed and assessed considering the calibrated analytical models for the safety of these structures.展开更多
To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a sec...To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.展开更多
Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the pe...Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the performance and operation of the floating offshore wind turbine(FOWT)in comparison to bottom-fixed wind turbines.In this paper,model predictive control(MPC)is utilized to overcome the limitation caused by platform motion.Due to the ease of control synthesis,the MPC is developed using a simplified model instead of high fidelity simulation model.The performance of the controller is verified in the presence of realistic wind and wave disturbances.The study demonstrates the effectiveness of MPC in reducing platform motions and rotor/generator speed regulation of FOWTs.展开更多
The platform scheduling problem in battlefield is one of the important problems in military operational research.It needs to minimize mission completing time and meanwhile maximize the mission completing accuracy with...The platform scheduling problem in battlefield is one of the important problems in military operational research.It needs to minimize mission completing time and meanwhile maximize the mission completing accuracy with a limited number of platforms.Though the traditional certain models obtain some good results,uncertain model is still needed to be introduced since the battlefield environment is complex and unstable.An uncertain model is prposed for the platform scheduling problem.Related parameters in this model are set to be fuzzy or stochastic.Due to the inherent disadvantage of the solving methods for traditional models,a new method is proposed to solve the uncertain model.Finally,the practicability and availability of the proposed method are demonstrated with a case of joint campaign.展开更多
With the continuous development of artificial intelligence technology,its application field has gradually expanded.To further apply the deep reinforcement learning technology to the field of dynamic pricing,we build a...With the continuous development of artificial intelligence technology,its application field has gradually expanded.To further apply the deep reinforcement learning technology to the field of dynamic pricing,we build an intelligent dynamic pricing system,introduce the reinforcement learning technology related to dynamic pricing,and introduce existing research on the number of suppliers(single supplier and multiple suppliers),environmental models,and selection algorithms.A two-period dynamic pricing game model is designed to assess the optimal pricing strategy for e-commerce platforms under two market conditions and two consumer participation conditions.The first step is to analyze the pricing strategies of e-commerce platforms in mature markets,analyze the optimal pricing and profits of various enterprises under different strategy combinations,compare different market equilibriums and solve the Nash equilibrium.Then,assuming that all consumers are naive in the market,the pricing strategy of the duopoly e-commerce platform in emerging markets is analyzed.By comparing and analyzing the optimal pricing and total profit of each enterprise under different strategy combinations,the subgame refined Nash equilibrium is solved.Finally,assuming that the market includes all experienced consumers,the pricing strategy of the duopoly e-commerce platform in emerging markets is analyzed.展开更多
Model driven architecture(MDA) is an evolutionary step in software development.Model transformation forms a key part of MDA.The transformation from computation independent model(CIM) to platform independent model(PIM)...Model driven architecture(MDA) is an evolutionary step in software development.Model transformation forms a key part of MDA.The transformation from computation independent model(CIM) to platform independent model(PIM) is the first step of the transformation.This paper proposes an approach for this transformation with pattern.In this approach, we take advantage of"reuse"from various standpoints.Feature model is used to describe the requirement of the application.This can help us bring"reuse"into effect at requirement level.Moreover we use pattern to transform CIM to PIM.This can help us bring"reuse"into effect at development level.Meanwhile, pattern was divided into four hierarchies.Different hierarchies of pattern are used to help us utilize reuse at different phase of development.From another standpoint, feature model describes the problem of a domain while pattern describe the problem across domains.This can help us reuse the element in and across domains.Finally, the detailed process of the transformation is given.展开更多
The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures...The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures from different aspects and perspectives, we would have to evaluate many different parameters about them. So categorizing these parameters can help to perform their related analysis with more accuracy and more details. Due to the efficient force it exerts on the structure, the pressure distribution around every marine or hydraulic structure has a significant importance, and it even accounts for one of the dominant issues in designing and building of such structures. In the present study, an oil platform located in Phase 15 of South Pars oil fields, located in the Persian Gulf waters, has been analyzed using the FLOW 3D software. The outputs indicate that the pressure of water is distributed almost hydrostatically with the depth, and its maximum reaches 0.6 MPa at the bottom.展开更多
In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between H...In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.展开更多
Offshore jacket platforms are widely used in offshore oil and gas exploitation.Finite element models of such structures need to have many degrees of freedom(DOFs) to represent the geometrical detail of complex structu...Offshore jacket platforms are widely used in offshore oil and gas exploitation.Finite element models of such structures need to have many degrees of freedom(DOFs) to represent the geometrical detail of complex structures,thereby leading to incompatibility in the number of DOFs of experimental models.To bring them both to the same order while ensuring that the essential eigen-properties of the refined model match those of experimental models,an extended model refinement procedure is presented in this paper.Vibration testing of an offshore jacket platform model is performed to validate the applicability of the proposed approach.A full-order finite element model of the platform is established and then tuned to meet the measured modal properties identified from the acceleration signals.Both model reduction and modal expansion methods are investigated,as well as various scenarios of sensor arrangements.Upon completion of the refinement,the updated jacket platform model matches the natural frequencies of the measured model well.展开更多
In order to solve the problem of difficult modeling and identification caused by time-variable parameters,multiple inputs and outputs and unstable open loop,a subsystem model-based close-loop grey-box identification m...In order to solve the problem of difficult modeling and identification caused by time-variable parameters,multiple inputs and outputs and unstable open loop,a subsystem model-based close-loop grey-box identification method was put forward when consider the main coupling effects of hydraulic Stewart platform.Firstly,the whole system is divided into three TITO(Two Input Two Output) subsystems according to the characteristics of the pseudo-mass matrix,hence transfer function matrix model of the subsystem can also be found.Secondly,since the Stewart platform is unstable,the close-loop transfer model of the subsystem is derived under the proportional controllers.The inverse M serial is adopted as the identification signal to get the experimental data.All parameters of the subsystem are determined in close-loop indirect identification by PEM(Prediction Error Method).Finally,a case study validates the correctness and effectiveness of the subsystem model-based close-loop grey-box identification method for hydraulic Stewart platform.展开更多
The Hawaiian Islands, and particularly the Maui 4-island region, are a critical breeding and calving habitat for humpback whales (Megaptera novaeangliae) belonging to the Hawaii distinct population segment. Our aims w...The Hawaiian Islands, and particularly the Maui 4-island region, are a critical breeding and calving habitat for humpback whales (Megaptera novaeangliae) belonging to the Hawaii distinct population segment. Our aims were to test the use of platforms-of-opportunity to determine trends in mother-calf pod use of the region and to present opportunistic platforms as an alternative method of long-term, cross-seasonal monitoring. Data were collected from whale watching vessels over a 4-year period and analyzed using occupancy models to determine the probability of habitat use of pods with calves and pods without calves within the study area. Detection probability was influenced by survey effort and month for all pod types with detection of adult only pods further influenced by year. Pods with a calf showed a preference for shallow (<100 meters) low latitude waters (<20.7°N), while pods without a calf preferred deeper waters (>75 meters). Results presented here align with previous work, both in Hawaii and in other breeding grounds, which show a distinct segregation of mothers with a calf from other age-classes of humpback whales. The need for long-term continuous monitoring of cetacean populations is crucial to ensure species conservation. Data collected aboard platforms-of-opportunity, as presented here, provide important insight on humpback whale spatial and temporal distribution, which are essential for species protection and management.展开更多
基金supported by Shanghai 2021“Science and Technology Innovation Action Plan”:Scientific and Technological Projects for Social Development(Grant No.21DZ1202701).
文摘A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM.
基金This study is a phased achievement of the“Research on Innovative Communication of Romance of the Three Kingdoms under Audio Empowerment”project(No.23ZGL16)funded by Zhuge Liang Research Center,a key research base of social sciences in Sichuan Province.
文摘Visual media have dominated sensory communications for decades,and the resulting“visual hegemony”leads to the call for the“auditory return”in order to achieve a holistic balance in cultural acceptance.Romance of the Three Kingdoms,a classic literary work in China,has received significant attention and promotion from leading audio platforms.However,the commercialization of digital audio publishing faces unprecedented challenges due to the mismatch between the dissemination of long-form content on digital audio platforms and the current trend of short and fast information reception.Drawing on the Business Model Canvas Theory and taking Romance of the Three Kingdoms as the main focus of analysis,this paper argues that the construction of a business model for the audio publishing of classical books should start from three aspects:the user evaluation of digital audio platforms,the establishment of value propositions based on the“creative transformation and innovative development”principle,and the improvement of the audio publishing infrastructure to ensure the healthy operation and development of the digital audio platforms and consequently improve their current state of development and expand the boundaries of cultural heritage.
文摘Leveraging the Baidu Qianfan model platform,this paper designs and implements a highly efficient and accurate scoring system for subjective questions,focusing primarily on questions in the field of computer network technology.The system enhances the foundational model by utilizing Qianfan’s training tools and integrating advanced techniques,such as supervised fine-tuning.In the data preparation phase,a comprehensive collection of subjective data related to computer network technology is gathered,cleaned,and labeled.During model training and evaluation,optimal hyperparameters and tuning strategies are applied,resulting in a model capable of scoring with high accuracy.Evaluation results demonstrate that the proposed model performs well across multiple dimensions-content,expression,and development scores-yielding results comparable to those of manual scoring.
基金Analysis and Research on Online Learning in Higher Vocational Colleges Based on Kirkpatrick Model-Taking the Course of Physiology as an Example(Project No.:D/2021/03/91)The excellent teaching team of Physiology of Suzhou Vocational College of Health Science and Technology in 2019(Project number:JXTD201912).
文摘Objective:To analyze the technical indexes of students’online learning behavior analysis based on Kirkman’s evaluation model,sort out the basic indexes of online learning behavior,and extract scientific and efficient evaluation indexes of online learning effect through statistical analysis.Methods:The online learning behavior data of Physiology of nursing students from 2021-2023 and the first semester of 22 nursing classes(3 and 4)were collected and analyzed.The preset learning behavior indexes were analyzed by multi-dimensional analysis and a correlation analysis was conducted between the indexes and the final examination scores to screen for the dominant important indexes for online learning effect evaluation.Results:The study found that the demand for online learning of nursing students from 2021-2023 increased and the effect was statistically significant.Compared with the stage assessment results,the online learning effect was statistically significant.Conclusion:The main indicators for evaluating and classifying online learning behaviors were summarized.These two indicators can help teachers predict which part of students need learning intervention,optimize the teaching process,and help students improve their learning behavior and academic performance.
基金supported by the National Security Major Basic Research Project of China (973-61334).
文摘Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.
文摘Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.
基金Supported by Human Resources Development Program of Korea Institute of Energy Technology Evaluation and Planning(KETEP)Ministry of Trade,Industry and Energy of Korea(Grant No.20134030200290)
文摘Virtual simulation is an economical and efficient method in mechanical system design. Numerical modeling of a spar platform, tethered by a mooring cable with a spherical joint is developed for the dynamic simulation of the floating structure in ocean. The geometry modeling of the spar is created using finite element methods. The submerged part of the spar bears the buoyancy, hydrodynamic drag force, and effect of the added mass and Froude-Krylov force. Strip theory is used to sum up the forces acting on the elements. The geometry modeling of the cable is established based on the lumped-mass-and-spring modeling through which the cable is divided into 10 elements. A new element-fixed local frame is used, which is created by the element orientation vector and relative velocity of the fluid, to express the loads acting on the cable. The bottom of the cable is fixed on the seabed by spring forces, while the top of the cable is connected to the bottom of the spar platform by a modified spherical joint. This system suffers the propagating wave and current in the X-direction and the linear wave theory is applied for setting of the propagating wave. Based on the numerical modeling, the displacement-load relationships are analyzed, and the simulation results of the numerical modeling are compared with those by the commercial simulation code, Proteus DS. The comparison indicates that the numerical modeling of the spar platform tethered by a mooring cable is well developed, which provides an instruction for the optimization of a floating structure tethered by a mooring cable system.
文摘The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy.
基金supported by the National Natural Science Foundation of China(61573017 61703425)+2 种基金the Aeronautical Science Fund(20175796014)the Shaanxi Province Natural Science Foundation Research Project(2016JQ6062 2017JM6062)
文摘Platform planning is one of the important problems in the command and control(C2) field. Hereto, we analyze the platform planning problem and present nonlinear optimal model aiming at maximizing the task completion qualities. Firstly, we take into account the relation among tasks and build the single task nonlinear optimal model with a set of platform constraints. The Lagrange relaxation method and the pruning strategy are used to solve the model. Secondly, this paper presents optimization-based planning algorithms for efficiently allocating platforms to multiple tasks. To achieve the balance of the resource assignments among tasks, the m-best assignment algorithm and the pair-wise exchange(PWE)method are used to maximize multiple tasks completion qualities.Finally, a series of experiments are designed to verify the superiority and effectiveness of the proposed model and algorithms.
文摘The identification of variations in the dynamic behavior of structures is an important subject in structural integrity assessment.Improvement and servicing of offshore platforms in the marine environment with constant changing,requires understanding the real behavior of these structures to prevent possible failure.In this work,empirical and numerical models of jacket structure are investigated.A test on experimental modal analysis is accomplished to acquire the response of structure and a mathematical model of the jacket structure is also performed.Then,based on the control theory using developed reduction system,the matrices of the platform model is calibrated and updated.The current methodology can be applied to prepare the finite element model to be more adaptable to the empirical model.Calibrated results with the proposed approach in this paper are very close to those of the actual model and also this technique leads to a reduction in the amount of calculations and expenses.The research clearly confirms that the dynamic behavior of fixed marine structures should be designed and assessed considering the calibrated analytical models for the safety of these structures.
基金Project (61174203) supported by the National Natural Science Foundation of China
文摘To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.
基金supported by Ministry of Science and Technology of China(No.2017YFE0132000).
文摘Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the performance and operation of the floating offshore wind turbine(FOWT)in comparison to bottom-fixed wind turbines.In this paper,model predictive control(MPC)is utilized to overcome the limitation caused by platform motion.Due to the ease of control synthesis,the MPC is developed using a simplified model instead of high fidelity simulation model.The performance of the controller is verified in the presence of realistic wind and wave disturbances.The study demonstrates the effectiveness of MPC in reducing platform motions and rotor/generator speed regulation of FOWTs.
基金supported by the National Natural Science Foundation of China(61573017)
文摘The platform scheduling problem in battlefield is one of the important problems in military operational research.It needs to minimize mission completing time and meanwhile maximize the mission completing accuracy with a limited number of platforms.Though the traditional certain models obtain some good results,uncertain model is still needed to be introduced since the battlefield environment is complex and unstable.An uncertain model is prposed for the platform scheduling problem.Related parameters in this model are set to be fuzzy or stochastic.Due to the inherent disadvantage of the solving methods for traditional models,a new method is proposed to solve the uncertain model.Finally,the practicability and availability of the proposed method are demonstrated with a case of joint campaign.
基金His work is supported by Scientific research planning project of Jilin Provincial Department of education in 2020:Analysis of the impact of industrial upgrading on employment of college students in Jilin Province(No.JJKH20200505JY).
文摘With the continuous development of artificial intelligence technology,its application field has gradually expanded.To further apply the deep reinforcement learning technology to the field of dynamic pricing,we build an intelligent dynamic pricing system,introduce the reinforcement learning technology related to dynamic pricing,and introduce existing research on the number of suppliers(single supplier and multiple suppliers),environmental models,and selection algorithms.A two-period dynamic pricing game model is designed to assess the optimal pricing strategy for e-commerce platforms under two market conditions and two consumer participation conditions.The first step is to analyze the pricing strategies of e-commerce platforms in mature markets,analyze the optimal pricing and profits of various enterprises under different strategy combinations,compare different market equilibriums and solve the Nash equilibrium.Then,assuming that all consumers are naive in the market,the pricing strategy of the duopoly e-commerce platform in emerging markets is analyzed.By comparing and analyzing the optimal pricing and total profit of each enterprise under different strategy combinations,the subgame refined Nash equilibrium is solved.Finally,assuming that the market includes all experienced consumers,the pricing strategy of the duopoly e-commerce platform in emerging markets is analyzed.
基金supported by the National Natural Science Foundation of China (Grant No.601730301)the National BasicResearch Program of China (973 Program) (Grant No.2002CB312001)
文摘Model driven architecture(MDA) is an evolutionary step in software development.Model transformation forms a key part of MDA.The transformation from computation independent model(CIM) to platform independent model(PIM) is the first step of the transformation.This paper proposes an approach for this transformation with pattern.In this approach, we take advantage of"reuse"from various standpoints.Feature model is used to describe the requirement of the application.This can help us bring"reuse"into effect at requirement level.Moreover we use pattern to transform CIM to PIM.This can help us bring"reuse"into effect at development level.Meanwhile, pattern was divided into four hierarchies.Different hierarchies of pattern are used to help us utilize reuse at different phase of development.From another standpoint, feature model describes the problem of a domain while pattern describe the problem across domains.This can help us reuse the element in and across domains.Finally, the detailed process of the transformation is given.
文摘The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures from different aspects and perspectives, we would have to evaluate many different parameters about them. So categorizing these parameters can help to perform their related analysis with more accuracy and more details. Due to the efficient force it exerts on the structure, the pressure distribution around every marine or hydraulic structure has a significant importance, and it even accounts for one of the dominant issues in designing and building of such structures. In the present study, an oil platform located in Phase 15 of South Pars oil fields, located in the Persian Gulf waters, has been analyzed using the FLOW 3D software. The outputs indicate that the pressure of water is distributed almost hydrostatically with the depth, and its maximum reaches 0.6 MPa at the bottom.
基金sponsored by National Natural Science Foundation of China (No.91538104,No.91438205)China Postdoctoral Science Foundation (No.2011M500664)
文摘In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.
基金supported by the Major Program of the National Natural Science Foundation of China(No.51490675)the National Natural Science Foundation of China(No.51479183)the Taishan Scholars Program of Shandong Province
文摘Offshore jacket platforms are widely used in offshore oil and gas exploitation.Finite element models of such structures need to have many degrees of freedom(DOFs) to represent the geometrical detail of complex structures,thereby leading to incompatibility in the number of DOFs of experimental models.To bring them both to the same order while ensuring that the essential eigen-properties of the refined model match those of experimental models,an extended model refinement procedure is presented in this paper.Vibration testing of an offshore jacket platform model is performed to validate the applicability of the proposed approach.A full-order finite element model of the platform is established and then tuned to meet the measured modal properties identified from the acceleration signals.Both model reduction and modal expansion methods are investigated,as well as various scenarios of sensor arrangements.Upon completion of the refinement,the updated jacket platform model matches the natural frequencies of the measured model well.
文摘In order to solve the problem of difficult modeling and identification caused by time-variable parameters,multiple inputs and outputs and unstable open loop,a subsystem model-based close-loop grey-box identification method was put forward when consider the main coupling effects of hydraulic Stewart platform.Firstly,the whole system is divided into three TITO(Two Input Two Output) subsystems according to the characteristics of the pseudo-mass matrix,hence transfer function matrix model of the subsystem can also be found.Secondly,since the Stewart platform is unstable,the close-loop transfer model of the subsystem is derived under the proportional controllers.The inverse M serial is adopted as the identification signal to get the experimental data.All parameters of the subsystem are determined in close-loop indirect identification by PEM(Prediction Error Method).Finally,a case study validates the correctness and effectiveness of the subsystem model-based close-loop grey-box identification method for hydraulic Stewart platform.
文摘The Hawaiian Islands, and particularly the Maui 4-island region, are a critical breeding and calving habitat for humpback whales (Megaptera novaeangliae) belonging to the Hawaii distinct population segment. Our aims were to test the use of platforms-of-opportunity to determine trends in mother-calf pod use of the region and to present opportunistic platforms as an alternative method of long-term, cross-seasonal monitoring. Data were collected from whale watching vessels over a 4-year period and analyzed using occupancy models to determine the probability of habitat use of pods with calves and pods without calves within the study area. Detection probability was influenced by survey effort and month for all pod types with detection of adult only pods further influenced by year. Pods with a calf showed a preference for shallow (<100 meters) low latitude waters (<20.7°N), while pods without a calf preferred deeper waters (>75 meters). Results presented here align with previous work, both in Hawaii and in other breeding grounds, which show a distinct segregation of mothers with a calf from other age-classes of humpback whales. The need for long-term continuous monitoring of cetacean populations is crucial to ensure species conservation. Data collected aboard platforms-of-opportunity, as presented here, provide important insight on humpback whale spatial and temporal distribution, which are essential for species protection and management.