The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,th...The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.展开更多
We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent ...We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent catalytic performance in acetylene hydrochlorination.Herein,we examined the activity of Au supported on N‐MC(Au/N‐MC)and compared it with that of Au supported on nitrogen‐free mesoporous carbon(Au/MC).The acetylene conversion of Au/N‐MC was 50%at 180°C with an acetylene space velocity of 600 h–1 and VHCl/VC2H2 of 1.1,which was double the activity of Au/MC(25%).The introduced nitrogen atoms acted as anchor sites that stabilized the Au3+species and inhibited the reduction of Au3+to Au0 during the preparation of Au/N‐MC catalysts.展开更多
Direct oxidative coupling of an alcohol and amine,with air or molecular oxygen as the oxygen source,is an environmentally friendly method for imine synthesis.We developed an Fe catalyst supported on mesoporous carbon...Direct oxidative coupling of an alcohol and amine,with air or molecular oxygen as the oxygen source,is an environmentally friendly method for imine synthesis.We developed an Fe catalyst supported on mesoporous carbon(denoted by FeOx/HCMK-3) for this reaction with excellent activity and recyclability.FeOx/HCMK-3 was prepared by impregnating HNO3-treated mesoporous carbon(CMK-3) with iron nitrate solution.The highly dispersed FeOx species give FeOx/HCMK-3 high reducibility and are responsible for the high catalytic performance.Imine synthesis over FeOx/HCMK-3 follows a redox mechanism.The oxygen species in FeOx/HCMK-3 participate in the reaction and are then regenerated by oxidation with molecular O2.The reaction involves two consecutive steps:oxidative dehydrogenation of an alcohol to an aldehyde and coupling of the aldehyde with an amine to give an imine.Oxidative dehydrogenation of the alcohol is the rate-determining step in the reaction.展开更多
Wormholelike mesoporous carbons (WMCs) with three different pore diameters (D-P), namely WMC-F7 (D-p = 8.5 nm), WMC-F30 (D-p =4.4 nm), and WMC-F0 (D-p =3.1 nm) are prepared via a modified sol-gel process. Then PtRu na...Wormholelike mesoporous carbons (WMCs) with three different pore diameters (D-P), namely WMC-F7 (D-p = 8.5 nm), WMC-F30 (D-p =4.4 nm), and WMC-F0 (D-p =3.1 nm) are prepared via a modified sol-gel process. Then PtRu nanoparticles with the particle size (40 of 3.2 nm supported on WMCs are synthesized with a modified pulse microwave-assisted polyol method. It is found that the pore diameter of WMCs plays an important role in the electrochemical activity of PtRu toward alcohol electrooxidation reaction. PtRu/WMC-F7 with D-p > 2d(pt) exhibits the largest electrochemical surface area (ESA) and the highest activity toward methanol electrooxidation. With the decrease in Dp, PtRu/WMC-F30 and PtRu/WMC-F0 have much lower ESA and electrochemical activity, especially for the isopropanol electrooxidation with a larger molecular size. When D-p is more than twice d(pt), the mass transfer of reactants and electrolyte are easier, and thus more PtRu nanoparticles can be utilized and the catalysts activity can be enhanced. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind ...Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind of fascinating and potential support for the synthesis of effective supported cat-alysts. Here, a N-doped ordered mesoporous carbon with a high N content (9.58 wt%), high surface area (417 m^2/g), and three-dimensional cubic structure was synthesized successfully and used as an effective support for immobilizing Pt nanoparticles (NPs). The positive effects of nitrogen on the metal particle size enabled ultrasmall Pt NPs (about 1.0 ± 0.5 nm) to be obtained. Moreover, most of the Pt NPs are homogeneously dispersed in the mesoporous channels. However, using the ordered mesoporous carbon without nitrogen as support, the particles were larger (4.4 ± 1.7 nm) and many Pt NPs were distributed on the external surface, demonstrating the important role of the nitrogen species. The obtained N-doped ordered mesoporous material supported catalyst showed excellent catalytic activity (conversion 100%) and selectivity (〉99%) in the hydrogenation of halogenated nitrobenzenes under mild conditions. These values are much higher than those achieved using a commercial Pt/C catalyst (conversion 89% and selectivity 90%). This outstanding catalytic perfor-mance can be attributed to the synergetic effects of the mesoporous structure, N-functionalized support, and stabilized ultrasmall Pt NPs. Moreover, such supported catalyst also showed excellent catalytic performance in the hydrogenation of other halogenated nitrobenzenes and nitroarenes. In addition, the stability of the multifunctional catalyst was excellent and it could be reused more than 10 times without significant losses of activity and selectivity. Our results conclusively show that a N-doped carbon support enable the formation of ultrafine metal NPs and improve the reaction ac-tivity and selectivity.展开更多
Molecular nitrogen is relatively inert and the activation of its triple bond is full of challenges and of significance.Hence,searching for an efficiently heterogeneous catalyst with high stability and dispersion is on...Molecular nitrogen is relatively inert and the activation of its triple bond is full of challenges and of significance.Hence,searching for an efficiently heterogeneous catalyst with high stability and dispersion is one of the important targets of chemical technology.Here,we report a Ba‐K/Ru‐MC catalyst with Ru particle size of 1.5–2.5 nm semi‐embedded in a mesoporous C matrix and with dual promoters of Ba and K that exhibits a higher activity than the supported Ba‐Ru‐K/MC catalyst,although both have similar metal particle sizes for ammonia synthesis.Further,the Ba‐K/Ru‐MC catalyst is more active than commercial fused Fe catalysts and supported Ru catalysts.Characterization techniques such as high‐resolution transmission electron microscopy,N2 physisorption,CO chemisorption,and temperature‐programmed reduction suggest that the Ru nanoparticles have strong interactions with the C matrix in Ba‐K/Ru‐MC,which may facilitate electron transport better than supported nanoparticles.展开更多
Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The h...Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The high-cost PGM catalyst in fuel cells can be replaced by earth-abundant transition-metalbased catalysts,that is,an Fe-N-C catalyst,which is considered one of the most promising alternatives.However,the performance of the Fe-N-C catalyst is hindered by the low catalytic activity and poor stability,which is caused by insufficient active sites and the lack of optimization of the triple-phase interface for mass transportation.Herein,a novel Fe–N–C catalyst consisting of mono-dispersed hierarchically mesoporous carbon sphere cores and single Fe atom-dispersed functional shells are presented.The synergistic effect between highly dispersed Fe-active sites and well-organized porous structures yields the combination of high ORR activity and high mass transfer performance.The half-wave potential of the catalyst in 0.1M H_(2)SO_(4) is 0.82 V versus reversible hydrogen electrode,and the peak power density is 812 mW·cm^(−2) in H_(2)–O_(2) fuel cells.Furthermore,it shows superior methanol tolerance,which is almost immune to methanol poisoning and generates up to 162 mW·cm^(−2) power density in direct methanol fuel cells.展开更多
An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the ...An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).展开更多
Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this p...Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this paper. Raw materials and preparation procedure of the activated carbon have great influences on the compositions and surface structure of platinum/carbon catalysts. Platinum catalysts supported on activated carbon with high purity, high surface area, large pore volume and appropriate pore structure usually exhibit higher activities for hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The catalyst prepared from H2PtCl6 with pH=3 shows greater catalytic performance than those prepared under other conditions.展开更多
Heteroatom-doped meso/micro-porous carbon materials are conventionally produced by harsh carbonization under an inert atmosphere involving specific precursors,hard/soft templates,and heteroatom-containing agents.Herei...Heteroatom-doped meso/micro-porous carbon materials are conventionally produced by harsh carbonization under an inert atmosphere involving specific precursors,hard/soft templates,and heteroatom-containing agents.Herein,we report a facile synthesis of N and O co-doped meso/micro-porous carbon(NOMC)by template-free carbonization of a small-molecule precursor in a semi-closed system.The semi-closed carbonizaiton process yields hydrophilic NOMCs with large surface area in a high yield.The porous structure as well as the elemental composition of NOMCs can be modulated by changing the holding time at a particular temperature.NOMCs as metal-free heterogeneous catalysts can selectively oxidize benzyl alcohol and its derivatives into aldehydes/ketones with>85%conversion in aqueous solution,which is much higher than that of the control sample obtained in tube furnace(21%conversion),mainly due to their high N content,high percentage of pyridinic N,and large surface area.The presence of O-containing moieties also helps to improve the hydrophilicity and dispersion ability of catalysts and thus facilitates the mass transfer process during aqueous oxidation.The NOMC catalysts also dispayed excellent activity for a wide range of substrates with a selectivity of>99%.展开更多
Simple encapsulation of 3 nm gold nanoparticles in ordered mesoporous carbon with large pores of 17 nm and thick pore walls of 16 nm was achieved by a metal–ligand coordination assisted-selfassembly approach.Polystyr...Simple encapsulation of 3 nm gold nanoparticles in ordered mesoporous carbon with large pores of 17 nm and thick pore walls of 16 nm was achieved by a metal–ligand coordination assisted-selfassembly approach.Polystyrene-block-polyethylene-oxide(PS-b-PEO)diblock copolymer with a large molecular weight of the PS chain and mercaptopropyltrimethoxysilane were used as the template and the metal ligand,respectively.Small-angle X-ray scattering,X-ray diffraction,transmission electron microscopy,and X-ray photoelectron spectroscopy showed that monodispersed aggregation-free gold nanoparticles approximately 3 nm in size were partially embedded in the large open pore structure of the ordered mesoporous carbon.The strong coordination between the gold species and the mercapto groups and the thick porous walls increased the dispersion of the gold nanoparticles and essentially inhibited particle aggregation at 600℃.The gold nanoparticles in the ordered mesoporous carbon are active and stable in the reduction of nitroarenes involving bulky molecules using sodium borohydride as a reducing agent under ambient conditions(30℃)in water.The large interconnected pore structure facilitates the mass transfer of bulky molecules.展开更多
Two kinds of bi-functional transition metal doped mesoporous materials(Fe-HMS and Fe-MCM-41) are prepared using one-step hydrothermal method and then treated with hydrochloric acid ethanol solution.The N2 adsorption a...Two kinds of bi-functional transition metal doped mesoporous materials(Fe-HMS and Fe-MCM-41) are prepared using one-step hydrothermal method and then treated with hydrochloric acid ethanol solution.The N2 adsorption and HRTEM results show that both of Fe-HMS and Fe-MCM-41 possess mesoporous structure. The UV–vis results suggest that the Fe species are mainly located within the framework. The basicity of as-prepared samples was studied by temperature programmed desorption using CO2 as probe molecule(CO2-TPD). The catalytic performance of Fe-HMS and Fe-MCM-41 in CO2 cycloaddition largely depends on the amount of the accessible basic sites. The acid–base active sites, framework Fe and PDDA species cooperatively catalyze the CO2 cycloaddition for the production of cyclic carbonates under the condition without any co-catalyst. The conversion of epichlorohydrin(ECH) is 97.4% and the selectivity of chloropropene carbonate is 92.9% under optimal conditions. The approximate rate constant of cycloaddition reaction of CO2 with ECH under optimum reaction temperature is calculated. It is worth noting that the Fe-HMS material shows superior reusability than Fe-MCM-41. In addition, this work provides a facile way on the synthesis of bi-functional acid–base heterogeneous catalyst with outstanding catalytic performance for the fixation of CO2.展开更多
The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succini...The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succinic)by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction(EOR)for direct ethanol fuel cell(DEFC).It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion.The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping,which was relevant to the efficiency of the catalysts.Moreover,the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding.The activity and stability for ethanol electrooxidation reaction(EOR)were investigated using cyclic voltammetry and chronoamperometry,respectively.The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction.Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR.Moreover,the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.展开更多
Although platinum(Pt) is highly active for hydrogen evolution reaction(HER)[1], it is crucial to explore the effective approach for minimizing the Pt loading amount in the practical application. Herein, one ultralow-t...Although platinum(Pt) is highly active for hydrogen evolution reaction(HER)[1], it is crucial to explore the effective approach for minimizing the Pt loading amount in the practical application. Herein, one ultralow-temperature solution reduction approach is developed to anchor atomically dispersed Pt atoms on carbon nanotubes(Pt-CNTs), which decelerates the diffusion rate of Pt Cl2-6 ion reached onto the carbon nanotubes and lowers the free energy of Pt atoms in the solution to reduce the probability of the Pt aggregation. The obtained Pt-CNTs exhibits a low overpotential of 41 mV@10 mA cm^(-2) for HER in acidic media. The calculation results revealed that the improvement of the electrocatalytic activity is contributed by the interaction between CNTs and Pt atoms, which descreases the the Pt d band cneter referred to the Fermi level and lowers the Gibbs free energy of H*adsorption. This work may provide one easy and convenient strategy for the large-scale use of Pt catalysts in practical applications.展开更多
By means of chemical reduction,nanoparticles of platinum were deposited on the surface of multi walled carbon nanotubes (MWCNTs).The performance of hydrogen storage of as prepared MWCNTs decorated with platinum was ...By means of chemical reduction,nanoparticles of platinum were deposited on the surface of multi walled carbon nanotubes (MWCNTs).The performance of hydrogen storage of as prepared MWCNTs decorated with platinum was investigated.The results indicate that:(1) Hydrogen uptake is more quick and intense for decorated MWCNTs than that for not decorated ones at 10.931MPa and room temperature.The saturation of hydrogen uptake of the former only lasts about 30min,while the latter needs about 150 min;(2) The amount of hydrogen uptake of decorated MWCNTs is about 1.13wt%, which is larger than that of not decorated ones(about 0.54wt%);(3) However,more than 37% hydrogen absorbed by decorated MWCNTs is chemisorbed.展开更多
Colloidal synthesis method such as oleylamine(OAm)-stabilized process is of great interest for obtaining uniform and highly dispersed platinum nanoparticle catalysts, yet the ligand may unavoidably inhibit their elect...Colloidal synthesis method such as oleylamine(OAm)-stabilized process is of great interest for obtaining uniform and highly dispersed platinum nanoparticle catalysts, yet the ligand may unavoidably inhibit their electro-catalytic performance. Thus, fully removing these ligands is critical to activate catalyst surface. Previous research of OAm removal process pointed that thermal annealing was the most effective way in comparison with other methods such as chemical washing, UV–Ozone irradiation and cyclic voltammetry sweeping, but generally resulting in undesired growth of platinum nanoparticle. Few studies concerning a more efficient ligand removal process have been published yet. In this work we proposed a platinum in-situ catalytic OAm combustion strategy to elucidate the removal mechanism of OAm ligands in thermal process and the key experimental parameters were also optimized. In addition, heat flow signal based on differential scanning calorimetry(DSC) measurement as a sensitive indicator, is suggested to reveal the ligand removal efficiency, which is much more reliable than the traditional spectroscopy.In comparison with commercial Pt/C sample, such a surface clean Pt/C electrocatalyst has shown an enhanced specific activity for oxygen reduction reaction. Our removal strategy and the evaluation method are highly instructive to efficient removal of different organic ligands.展开更多
The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electro...The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell.展开更多
Reducing the loading of noble Pt-based catalyst is vital for the commercialization of proton exchange membrane fuel cell(PEMFC),However,severe mass transfer polarization loss resulting in fuel cell performance decline...Reducing the loading of noble Pt-based catalyst is vital for the commercialization of proton exchange membrane fuel cell(PEMFC),However,severe mass transfer polarization loss resulting in fuel cell performance decline will be encountered in ultra-low Pt PEMFC.In this work,mild oxidized multiwalled carbon nanotubes(mMWCNT)were adopted to construct the catalyst layer,and by varying the loading of carbon nanotubes,the catalyst layer structure was optimized.A high peak power density of 1.23 W·cm^(-2) for the MEA with mMWCNT was obtained at an ultra-low loading of 120μg·cm^(-2) Pt/PtRu(both cathode and anode),which was 44.7%higher than that of MEA without mMWCNT.Better catalyst dispersion,low charge transfer resistance,more porous structure and high hydrophobicity of catalyst layer were ascribed for the reasons of the performance improvement.展开更多
Although the hard template method is often employed to prepare N-doped mesoporous carbon(N-MC), tile removal of the silica template commonly involves the use of highly toxic HF or repeated treatment with NaOH soluti...Although the hard template method is often employed to prepare N-doped mesoporous carbon(N-MC), tile removal of the silica template commonly involves the use of highly toxic HF or repeated treatment with NaOH solution. Herein, we reported a polyvinylidene fluoride-assisted one-step method for synthesis of N-MC, namely the silica-free N-MC can be prepared via temperature-programmed thermal treatment of a slurry obtained by dispersing nano-silica into a solution containing sucrose, urea, oxalic acid, polyvinylidene fluoride and dimethylacetamide. The resulting N-MC, which owns 3.47%(mass fraction) nitrogen and a surface area of 929 m^2/g, is a highly suitable support of Pd catalyst used in hydrodechlorination of 2,4-dichlorophenol, with its performance being much better than those of MC and activated carbon. The excellent catalytic hydrodeehlorination activity of the Pd/N-MC catalyst can be attributed to its strong metal-support interaction, which results in a good Pd dispersion and high resistance to the growth of nanosized Pd under reaction conditions.展开更多
The sintering of Pt nanoparticles is one of the main reasons for catalyst deactivation during the high-temperature propane dehydrogenation(PDH) reaction. Promoters and supports have been introduced to prolong the cata...The sintering of Pt nanoparticles is one of the main reasons for catalyst deactivation during the high-temperature propane dehydrogenation(PDH) reaction. Promoters and supports have been introduced to prolong the catalyst life.However, it is still necessary to develop novel catalysts with robust stability. Herein, the phosphorus-modified carbon nanotube-supported Pt nanoparticles were employed for the PDH process. Phosphorus modification improves the Pt dispersion, effectively promoting the activity of Pt/P-CNTs. Additionally, the phosphorus-modified CNTs can interact strongly with Pt nanoparticles by improving the electron transfer or hybridization, stabilizing Pt nanoparticles from agglomeration, and significantly enhancing the catalyst stability.展开更多
基金gratefully acknowledge the financial support of the National Natural Science Foundation of China(22108145 and 21978143)the Shandong Province Natural Science Foundation(ZR2020QB189)+1 种基金State Key Laboratory of Heavy Oil Processing(SKLHOP202203008)the Talent Foundation funded by Province and Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering(STHGYX2201).
文摘The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.
基金Zhejiang Provincial Natural Science Foundation of China(LY17B030010)~~
文摘We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent catalytic performance in acetylene hydrochlorination.Herein,we examined the activity of Au supported on N‐MC(Au/N‐MC)and compared it with that of Au supported on nitrogen‐free mesoporous carbon(Au/MC).The acetylene conversion of Au/N‐MC was 50%at 180°C with an acetylene space velocity of 600 h–1 and VHCl/VC2H2 of 1.1,which was double the activity of Au/MC(25%).The introduced nitrogen atoms acted as anchor sites that stabilized the Au3+species and inhibited the reduction of Au3+to Au0 during the preparation of Au/N‐MC catalysts.
基金supported by the National Natural Science Foundation of China(21473073,21473074)the "13th Five-Year" Science and Technology Research of the Education Department of Jilin Province(2016403)~~
文摘Direct oxidative coupling of an alcohol and amine,with air or molecular oxygen as the oxygen source,is an environmentally friendly method for imine synthesis.We developed an Fe catalyst supported on mesoporous carbon(denoted by FeOx/HCMK-3) for this reaction with excellent activity and recyclability.FeOx/HCMK-3 was prepared by impregnating HNO3-treated mesoporous carbon(CMK-3) with iron nitrate solution.The highly dispersed FeOx species give FeOx/HCMK-3 high reducibility and are responsible for the high catalytic performance.Imine synthesis over FeOx/HCMK-3 follows a redox mechanism.The oxygen species in FeOx/HCMK-3 participate in the reaction and are then regenerated by oxidation with molecular O2.The reaction involves two consecutive steps:oxidative dehydrogenation of an alcohol to an aldehyde and coupling of the aldehyde with an amine to give an imine.Oxidative dehydrogenation of the alcohol is the rate-determining step in the reaction.
基金supported by the National Natural Science Foundation of China (no. 91434106)
文摘Wormholelike mesoporous carbons (WMCs) with three different pore diameters (D-P), namely WMC-F7 (D-p = 8.5 nm), WMC-F30 (D-p =4.4 nm), and WMC-F0 (D-p =3.1 nm) are prepared via a modified sol-gel process. Then PtRu nanoparticles with the particle size (40 of 3.2 nm supported on WMCs are synthesized with a modified pulse microwave-assisted polyol method. It is found that the pore diameter of WMCs plays an important role in the electrochemical activity of PtRu toward alcohol electrooxidation reaction. PtRu/WMC-F7 with D-p > 2d(pt) exhibits the largest electrochemical surface area (ESA) and the highest activity toward methanol electrooxidation. With the decrease in Dp, PtRu/WMC-F30 and PtRu/WMC-F0 have much lower ESA and electrochemical activity, especially for the isopropanol electrooxidation with a larger molecular size. When D-p is more than twice d(pt), the mass transfer of reactants and electrolyte are easier, and thus more PtRu nanoparticles can be utilized and the catalysts activity can be enhanced. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金supported by the National Natural Science Foundation of China(201573136,U1510105)the Scientific Research Start-up Funds of Shanxi University(RSC723)~~
文摘Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind of fascinating and potential support for the synthesis of effective supported cat-alysts. Here, a N-doped ordered mesoporous carbon with a high N content (9.58 wt%), high surface area (417 m^2/g), and three-dimensional cubic structure was synthesized successfully and used as an effective support for immobilizing Pt nanoparticles (NPs). The positive effects of nitrogen on the metal particle size enabled ultrasmall Pt NPs (about 1.0 ± 0.5 nm) to be obtained. Moreover, most of the Pt NPs are homogeneously dispersed in the mesoporous channels. However, using the ordered mesoporous carbon without nitrogen as support, the particles were larger (4.4 ± 1.7 nm) and many Pt NPs were distributed on the external surface, demonstrating the important role of the nitrogen species. The obtained N-doped ordered mesoporous material supported catalyst showed excellent catalytic activity (conversion 100%) and selectivity (〉99%) in the hydrogenation of halogenated nitrobenzenes under mild conditions. These values are much higher than those achieved using a commercial Pt/C catalyst (conversion 89% and selectivity 90%). This outstanding catalytic perfor-mance can be attributed to the synergetic effects of the mesoporous structure, N-functionalized support, and stabilized ultrasmall Pt NPs. Moreover, such supported catalyst also showed excellent catalytic performance in the hydrogenation of other halogenated nitrobenzenes and nitroarenes. In addition, the stability of the multifunctional catalyst was excellent and it could be reused more than 10 times without significant losses of activity and selectivity. Our results conclusively show that a N-doped carbon support enable the formation of ultrafine metal NPs and improve the reaction ac-tivity and selectivity.
基金supported by the National Natural Science Foundation of China(20803064)the Natural Science Foundation of Zhejiang Provence(LY17B030010)~~
文摘Molecular nitrogen is relatively inert and the activation of its triple bond is full of challenges and of significance.Hence,searching for an efficiently heterogeneous catalyst with high stability and dispersion is one of the important targets of chemical technology.Here,we report a Ba‐K/Ru‐MC catalyst with Ru particle size of 1.5–2.5 nm semi‐embedded in a mesoporous C matrix and with dual promoters of Ba and K that exhibits a higher activity than the supported Ba‐Ru‐K/MC catalyst,although both have similar metal particle sizes for ammonia synthesis.Further,the Ba‐K/Ru‐MC catalyst is more active than commercial fused Fe catalysts and supported Ru catalysts.Characterization techniques such as high‐resolution transmission electron microscopy,N2 physisorption,CO chemisorption,and temperature‐programmed reduction suggest that the Ru nanoparticles have strong interactions with the C matrix in Ba‐K/Ru‐MC,which may facilitate electron transport better than supported nanoparticles.
基金We gratefully acknowledge support from the National Natural Science Foundation of China(Grant Nos.21905220,51772240,21503158,51425301,U1601214,21703184)the China Postdoctoral Science Foundation(2020M673408)+5 种基金the Key Research and Development Plan of Shaanxi Province,China(Grant No.2018ZDXM-GY-135)the Fundamental Research Funds for“Young Talent Support Plan”of Xi'an Jiaotong University(HG6J003)the“1000‐Plan program”of Shaanxi Province,the Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University(ZQN-PY506)the Scientific Research Funds of Huaqiao University(17BS405)the State Key Laboratory for Mechanical Behavior of Materials(20192101)the Natural Science Foundation Committee of Jiangsu Province(BK20201190).
文摘Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The high-cost PGM catalyst in fuel cells can be replaced by earth-abundant transition-metalbased catalysts,that is,an Fe-N-C catalyst,which is considered one of the most promising alternatives.However,the performance of the Fe-N-C catalyst is hindered by the low catalytic activity and poor stability,which is caused by insufficient active sites and the lack of optimization of the triple-phase interface for mass transportation.Herein,a novel Fe–N–C catalyst consisting of mono-dispersed hierarchically mesoporous carbon sphere cores and single Fe atom-dispersed functional shells are presented.The synergistic effect between highly dispersed Fe-active sites and well-organized porous structures yields the combination of high ORR activity and high mass transfer performance.The half-wave potential of the catalyst in 0.1M H_(2)SO_(4) is 0.82 V versus reversible hydrogen electrode,and the peak power density is 812 mW·cm^(−2) in H_(2)–O_(2) fuel cells.Furthermore,it shows superior methanol tolerance,which is almost immune to methanol poisoning and generates up to 162 mW·cm^(−2) power density in direct methanol fuel cells.
基金supported by the Royal Academy of Engineering,United Kingdom
文摘An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).
文摘Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this paper. Raw materials and preparation procedure of the activated carbon have great influences on the compositions and surface structure of platinum/carbon catalysts. Platinum catalysts supported on activated carbon with high purity, high surface area, large pore volume and appropriate pore structure usually exhibit higher activities for hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The catalyst prepared from H2PtCl6 with pH=3 shows greater catalytic performance than those prepared under other conditions.
基金supported by National Natural Science Foundation of China(Grant No.51772089 and 21872046)the Youth 1000 Talent Program of China+3 种基金the Outstanding Youth Scientist Foundation of Hunan Province(Grant No.2018JJ1009)the Natural Science Foundation of Hunan Province(Grant No.2020JJ4174)Provincial Science and Technology Innovation Platform and Talent Plan-Changsha,Zhuzhou and Xiangtan High-level Talents Accumulation Project(Grant No.2017XK2023)Research and Development Plan of Key Areas in Hunan Province(Grant No.2019GK2235)
文摘Heteroatom-doped meso/micro-porous carbon materials are conventionally produced by harsh carbonization under an inert atmosphere involving specific precursors,hard/soft templates,and heteroatom-containing agents.Herein,we report a facile synthesis of N and O co-doped meso/micro-porous carbon(NOMC)by template-free carbonization of a small-molecule precursor in a semi-closed system.The semi-closed carbonizaiton process yields hydrophilic NOMCs with large surface area in a high yield.The porous structure as well as the elemental composition of NOMCs can be modulated by changing the holding time at a particular temperature.NOMCs as metal-free heterogeneous catalysts can selectively oxidize benzyl alcohol and its derivatives into aldehydes/ketones with>85%conversion in aqueous solution,which is much higher than that of the control sample obtained in tube furnace(21%conversion),mainly due to their high N content,high percentage of pyridinic N,and large surface area.The presence of O-containing moieties also helps to improve the hydrophilicity and dispersion ability of catalysts and thus facilitates the mass transfer process during aqueous oxidation.The NOMC catalysts also dispayed excellent activity for a wide range of substrates with a selectivity of>99%.
基金supported by the National Natural Science Foun-dation of China(22025204,92034301,21773156,and 51932005)the Shanghai Sci.&Tech.and Edu.Committee(19070502700)the Innovation Program of the Shanghai Municipal Education Com-mission(2021-01-07-00-02-E00119).
文摘Simple encapsulation of 3 nm gold nanoparticles in ordered mesoporous carbon with large pores of 17 nm and thick pore walls of 16 nm was achieved by a metal–ligand coordination assisted-selfassembly approach.Polystyrene-block-polyethylene-oxide(PS-b-PEO)diblock copolymer with a large molecular weight of the PS chain and mercaptopropyltrimethoxysilane were used as the template and the metal ligand,respectively.Small-angle X-ray scattering,X-ray diffraction,transmission electron microscopy,and X-ray photoelectron spectroscopy showed that monodispersed aggregation-free gold nanoparticles approximately 3 nm in size were partially embedded in the large open pore structure of the ordered mesoporous carbon.The strong coordination between the gold species and the mercapto groups and the thick porous walls increased the dispersion of the gold nanoparticles and essentially inhibited particle aggregation at 600℃.The gold nanoparticles in the ordered mesoporous carbon are active and stable in the reduction of nitroarenes involving bulky molecules using sodium borohydride as a reducing agent under ambient conditions(30℃)in water.The large interconnected pore structure facilitates the mass transfer of bulky molecules.
基金financial support from the Program for New Century Excellent Talents in University(NCET-040270)。
文摘Two kinds of bi-functional transition metal doped mesoporous materials(Fe-HMS and Fe-MCM-41) are prepared using one-step hydrothermal method and then treated with hydrochloric acid ethanol solution.The N2 adsorption and HRTEM results show that both of Fe-HMS and Fe-MCM-41 possess mesoporous structure. The UV–vis results suggest that the Fe species are mainly located within the framework. The basicity of as-prepared samples was studied by temperature programmed desorption using CO2 as probe molecule(CO2-TPD). The catalytic performance of Fe-HMS and Fe-MCM-41 in CO2 cycloaddition largely depends on the amount of the accessible basic sites. The acid–base active sites, framework Fe and PDDA species cooperatively catalyze the CO2 cycloaddition for the production of cyclic carbonates under the condition without any co-catalyst. The conversion of epichlorohydrin(ECH) is 97.4% and the selectivity of chloropropene carbonate is 92.9% under optimal conditions. The approximate rate constant of cycloaddition reaction of CO2 with ECH under optimum reaction temperature is calculated. It is worth noting that the Fe-HMS material shows superior reusability than Fe-MCM-41. In addition, this work provides a facile way on the synthesis of bi-functional acid–base heterogeneous catalyst with outstanding catalytic performance for the fixation of CO2.
基金supported by the Institutional Research Grant(Thailand Research Fund:IRG598004)
文摘The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succinic)by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction(EOR)for direct ethanol fuel cell(DEFC).It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion.The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping,which was relevant to the efficiency of the catalysts.Moreover,the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding.The activity and stability for ethanol electrooxidation reaction(EOR)were investigated using cyclic voltammetry and chronoamperometry,respectively.The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction.Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR.Moreover,the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.
基金financial support from the National Natural Science Foundation of China (No. 51572183)the Key Research and Development Plan of Science and Technology of China (No. 2018YFE0202600)。
文摘Although platinum(Pt) is highly active for hydrogen evolution reaction(HER)[1], it is crucial to explore the effective approach for minimizing the Pt loading amount in the practical application. Herein, one ultralow-temperature solution reduction approach is developed to anchor atomically dispersed Pt atoms on carbon nanotubes(Pt-CNTs), which decelerates the diffusion rate of Pt Cl2-6 ion reached onto the carbon nanotubes and lowers the free energy of Pt atoms in the solution to reduce the probability of the Pt aggregation. The obtained Pt-CNTs exhibits a low overpotential of 41 mV@10 mA cm^(-2) for HER in acidic media. The calculation results revealed that the improvement of the electrocatalytic activity is contributed by the interaction between CNTs and Pt atoms, which descreases the the Pt d band cneter referred to the Fermi level and lowers the Gibbs free energy of H*adsorption. This work may provide one easy and convenient strategy for the large-scale use of Pt catalysts in practical applications.
文摘By means of chemical reduction,nanoparticles of platinum were deposited on the surface of multi walled carbon nanotubes (MWCNTs).The performance of hydrogen storage of as prepared MWCNTs decorated with platinum was investigated.The results indicate that:(1) Hydrogen uptake is more quick and intense for decorated MWCNTs than that for not decorated ones at 10.931MPa and room temperature.The saturation of hydrogen uptake of the former only lasts about 30min,while the latter needs about 150 min;(2) The amount of hydrogen uptake of decorated MWCNTs is about 1.13wt%, which is larger than that of not decorated ones(about 0.54wt%);(3) However,more than 37% hydrogen absorbed by decorated MWCNTs is chemisorbed.
基金the financial support by DICP Grant no.ZZBS201705。
文摘Colloidal synthesis method such as oleylamine(OAm)-stabilized process is of great interest for obtaining uniform and highly dispersed platinum nanoparticle catalysts, yet the ligand may unavoidably inhibit their electro-catalytic performance. Thus, fully removing these ligands is critical to activate catalyst surface. Previous research of OAm removal process pointed that thermal annealing was the most effective way in comparison with other methods such as chemical washing, UV–Ozone irradiation and cyclic voltammetry sweeping, but generally resulting in undesired growth of platinum nanoparticle. Few studies concerning a more efficient ligand removal process have been published yet. In this work we proposed a platinum in-situ catalytic OAm combustion strategy to elucidate the removal mechanism of OAm ligands in thermal process and the key experimental parameters were also optimized. In addition, heat flow signal based on differential scanning calorimetry(DSC) measurement as a sensitive indicator, is suggested to reveal the ligand removal efficiency, which is much more reliable than the traditional spectroscopy.In comparison with commercial Pt/C sample, such a surface clean Pt/C electrocatalyst has shown an enhanced specific activity for oxygen reduction reaction. Our removal strategy and the evaluation method are highly instructive to efficient removal of different organic ligands.
基金supported by the National Natural Science Foundation of China (21476145)~~
文摘The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell.
基金financial supports by the National Key Research and Development Program of China(2019YFB1504500)the National Natural Science Foundation of China(22078031,91834301,21761162015)+1 种基金the Fundamental Research Funds for the Central Universities,CQU(2020CDJQY-A032,2020CDJLHZZ064)the Natural Science Foundation of Chongqing(cstc2020jcyjmsxmX0637)。
文摘Reducing the loading of noble Pt-based catalyst is vital for the commercialization of proton exchange membrane fuel cell(PEMFC),However,severe mass transfer polarization loss resulting in fuel cell performance decline will be encountered in ultra-low Pt PEMFC.In this work,mild oxidized multiwalled carbon nanotubes(mMWCNT)were adopted to construct the catalyst layer,and by varying the loading of carbon nanotubes,the catalyst layer structure was optimized.A high peak power density of 1.23 W·cm^(-2) for the MEA with mMWCNT was obtained at an ultra-low loading of 120μg·cm^(-2) Pt/PtRu(both cathode and anode),which was 44.7%higher than that of MEA without mMWCNT.Better catalyst dispersion,low charge transfer resistance,more porous structure and high hydrophobicity of catalyst layer were ascribed for the reasons of the performance improvement.
基金Supported by the National Natural Science Foundation of China(No.21776257).
文摘Although the hard template method is often employed to prepare N-doped mesoporous carbon(N-MC), tile removal of the silica template commonly involves the use of highly toxic HF or repeated treatment with NaOH solution. Herein, we reported a polyvinylidene fluoride-assisted one-step method for synthesis of N-MC, namely the silica-free N-MC can be prepared via temperature-programmed thermal treatment of a slurry obtained by dispersing nano-silica into a solution containing sucrose, urea, oxalic acid, polyvinylidene fluoride and dimethylacetamide. The resulting N-MC, which owns 3.47%(mass fraction) nitrogen and a surface area of 929 m^2/g, is a highly suitable support of Pd catalyst used in hydrodechlorination of 2,4-dichlorophenol, with its performance being much better than those of MC and activated carbon. The excellent catalytic hydrodeehlorination activity of the Pd/N-MC catalyst can be attributed to its strong metal-support interaction, which results in a good Pd dispersion and high resistance to the growth of nanosized Pd under reaction conditions.
基金supported by the National Natural Science Foundation of China (Grant 21706036)the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)the Natural Science Foundation of Fujian Province (Grant 2018J05019)
文摘The sintering of Pt nanoparticles is one of the main reasons for catalyst deactivation during the high-temperature propane dehydrogenation(PDH) reaction. Promoters and supports have been introduced to prolong the catalyst life.However, it is still necessary to develop novel catalysts with robust stability. Herein, the phosphorus-modified carbon nanotube-supported Pt nanoparticles were employed for the PDH process. Phosphorus modification improves the Pt dispersion, effectively promoting the activity of Pt/P-CNTs. Additionally, the phosphorus-modified CNTs can interact strongly with Pt nanoparticles by improving the electron transfer or hybridization, stabilizing Pt nanoparticles from agglomeration, and significantly enhancing the catalyst stability.