Owing to increasing global demand for carbon neutral and fossil-free energy systems,extensive research is being conducted on efficient and inexpensive electrocatalysts for catalyzing the kinetically sluggish oxygen re...Owing to increasing global demand for carbon neutral and fossil-free energy systems,extensive research is being conducted on efficient and inexpensive electrocatalysts for catalyzing the kinetically sluggish oxygen reduction reaction(ORR)at the cathode of fuel cells.Platinum(Pt)-based alloys are considered promising candidates for replacing expensive Pt catalysts.However,the current screening process of Pt-based alloys is time-consuming and labor-intensive,and the descriptor for predicting the activity of Pt-based catalysts is generally inaccurate.This study proposed a strategy by combining high-throughput first-principles calculations and machine learning to explore the descriptor used for screening Pt-based alloy catalysts with high Pt utilization and low Pt consump-tion.Among the 77 prescreened candidates,we identified 5 potential candidates for catalyzing ORR with low overpotential.Furthermore,during the second and third rounds of active learning,more Pt-based alloys ORR candidates are identi-fied based on the relationship between structural features of Pt-based alloys and their activity.In addition,we highlighted the role of structural features in Pt-based alloys and found that the difference between the electronegativity of Pt and heteroatom,the valence electrons number of the heteroatom,and the ratio of heteroatoms around Pt are the main factors that affect the activity of ORR.More importantly,the combination of those structural features can be used as structural descriptor for predicting the activity of Pt-based alloys.We believe the findings of this study will provide new insight for predicting ORR activ-ity and contribute to exploring Pt-based electrocatalysts with high Pt utiliza-tion and low Pt consumption experimentally.展开更多
Objective:To develop and validate a radiomics prognostic scoring system(RPSS)for prediction of progressionfree survival(PFS)in patients with stageⅣnon-small cell lung cancer(NSCLC)treated with platinum-based chemothe...Objective:To develop and validate a radiomics prognostic scoring system(RPSS)for prediction of progressionfree survival(PFS)in patients with stageⅣnon-small cell lung cancer(NSCLC)treated with platinum-based chemotherapy.Methods:In this retrospective study,four independent cohorts of stageⅣNSCLC patients treated with platinum-based chemotherapy were included for model construction and validation(Discovery:n=159;Internal validation:n=156;External validation:n=81,Mutation validation:n=64).First,a total of 1,182 three-dimensional radiomics features were extracted from pre-treatment computed tomography(CT)images of each patient.Then,a radiomics signature was constructed using the least absolute shrinkage and selection operator method(LASSO)penalized Cox regression analysis.Finally,an individualized prognostic scoring system incorporating radiomics signature and clinicopathologic risk factors was proposed for PFS prediction.Results:The established radiomics signature consisting of 16 features showed good discrimination for classifying patients with high-risk and low-risk progression to chemotherapy in all cohorts(All P<0.05).On the multivariable analysis,independent factors for PFS were radiomics signature,performance status(PS),and N stage,which were all selected into construction of RPSS.The RPSS showed significant prognostic performance for predicting PFS in discovery[C-index:0.772,95%confidence interval(95%CI):0.765-0.779],internal validation(C-index:0.738,95%CI:0.730-0.746),external validation(C-index:0.750,95%CI:0.734-0.765),and mutation validation(Cindex:0.739,95%CI:0.720-0.758).Decision curve analysis revealed that RPSS significantly outperformed the clinicopathologic-based model in terms of clinical usefulness(All P<0.05).Conclusions:This study established a radiomics prognostic scoring system as RPSS that can be conveniently used to achieve individualized prediction of PFS probability for stageⅣNSCLC patients treated with platinumbased chemotherapy,which holds promise for guiding personalized pre-therapy of stageⅣNSCLC.展开更多
Background:Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer(NSCLC);it is therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this tr...Background:Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer(NSCLC);it is therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this treatment.Four important transporter genes are expressed in the kidney,including organic cation transporter 2(OCT2),multidrug and toxin extrusion 1(MATEl),ATP-binding cassette subfamily B member 1 {ABCB1),and ATP-binding cassette subfamily C member 2(ABCC2),and genetic polymorphisms in these genes may alter the efficacy and adverse effects of platinum drugs.This study aimed to evaluate the association of genetic polymorphisms of these transporters with platinumbased chemotherapy response and toxicity in NSCLC patients.Methods:A total of 403 Chinese NSCLC patients were recruited for this study.All patients were newly diagnosed with NSCLC and received at least two cycles of platinum-based chemotherapy.The tumor response and toxicity were evaluated after two cycles of treatment,and the patients' genomic DNA was extracted.Seven single-nucleotide polymorphisms in four transporter genes were selected to investigate their associations with platinum-based chemotherapy toxicity and response.Results:OCT2 rs316019 was associated with hepatotoxicity(P = 0.026) and hematological toxicity(P = 0.039),and MATEl rs2289669 was associated with hematological toxicity induced by platinum(P = 0.016).In addition,ABCC2rs717620 was significantly associated with the platinum-based chemotherapy response(P = 0.031).ABCB1 polymorphisms were associated with neither response nor toxicity.Conclusion:OCT2 rs316019,MATEl rs2289669,and ABCC2 rs717620 might be potential clinical markers for predicting chemotherapy toxicity and response induced by platinum-based treatment in NSCLC patients.Trial registration Chinese Clinical Trial Registry展开更多
Objective This study assessed the weight loss changes and gastrointestinal symptoms in patients with advanced tumors receiving platinum-containing chemotherapy.Methods We retrospectively reviewed 297 patients with adv...Objective This study assessed the weight loss changes and gastrointestinal symptoms in patients with advanced tumors receiving platinum-containing chemotherapy.Methods We retrospectively reviewed 297 patients with advanced cancers[124 gastrointestinal(GI)cancer patients,119 lung cancer patients and 54 head and neck cancer(HNC)patients]receiving first-line chemotherapy at Tongji Hospital.The patients’changes in body weight,body mass index(BMI),and biochemical parameters(serum haemoglobin and albumin levels)were compared before and after two chemotherapy cycles.Results More than half[54.88%(163/297)]of the patients had experienced unintentional weight loss in the 6 months before chemotherapy,and weight loss≥5%and≥10%of the body mass was noted in 35.69%and 20.20%of the patients,respectively.After two cycles of platinum-based chemotherapy,the proportions of patients with a>5%reduction in body weight among patients with GI,lung,and head and neck cancers were 47.5%(59/124),44.53%(53/119),and 46.2%(25/54),respectively.The patients with GI and lung cancers were more vulnerable to extreme weight loss(≥10%)than those with HNC(P=0.025).The serum hemoglobin levels were also remarkably decreased relative to those before chemotherapy(all P<0.05).Common GI symptoms reported by all patients included anorexia(61.28%),vomiting(52.53%),and nausea(51.18%).A higher proportion of patients with≥10%weight loss experienced anorexia and vomiting(OR=12.21 and 3.61,P=0.008 and 0.047,respectively).Conclusions For advanced cancer patients receiving platinum-based chemotherapy,the GI symptoms are the major factor related to their nutritional status.Appropriate nutritional screening,evaluation and treatment should be applied during the treatment of cancer in order to reduce GI symptoms and improve the patient’s nutritional status.展开更多
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ...Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
Cisplatin resistance still remains a major obstacle to successful treatment of cancer.The development of cellular resistance to platinum-based chemotherapies is often associated with reduced intracellular platinum con...Cisplatin resistance still remains a major obstacle to successful treatment of cancer.The development of cellular resistance to platinum-based chemotherapies is often associated with reduced intracellular platinum concentrations.In some models,this reduction is due to abnormal membrane protein trafficking,resulting in reduced uptake by transporters at the cell surface.Given the central role of platinum drugs in the clinic.展开更多
The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-pre...The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-prepared and annealed samples,The results on the technical magnetic properties of this alloy system have been discussed and compared with Masumoto's.展开更多
The residual metal impurities in cisplatin, carboplatin and oxaliplatin were determined by ICP-AES. The samples were ignited and dissolved with HCl:HNO 3 (3:1). The method is simple and accurate. By the determination ...The residual metal impurities in cisplatin, carboplatin and oxaliplatin were determined by ICP-AES. The samples were ignited and dissolved with HCl:HNO 3 (3:1). The method is simple and accurate. By the determination of the metal residues in the samples, the calculated actual daily exposure and concentration of the metal Pd, Ir, Rh, Ru, Mo, Ni, Cr, V, Cu, Mn, Fe and Zn that were less than the permitted daily exposures (PDE) and the limited concentration permitted in the EMEA guideline on the specification limits for residues of metal catalysts or metal reagents [1] . The metal residues can de adequately removed from the active pharmaceutical ingredients and the corresponding drugs. The trace metal residues will not affect human health and lead to the safety hazard by the intravenous injection.展开更多
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ...This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.展开更多
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite...Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.展开更多
Objective:The aim of our study was to evaluate the in vitro antitumor activity of two novel platinum-based(II) complexes(2.3-pyridinedicarboxylic acid dehydrate platinum and 2.3-pyrazinedicarboxylic acid dehydrate pla...Objective:The aim of our study was to evaluate the in vitro antitumor activity of two novel platinum-based(II) complexes(2.3-pyridinedicarboxylic acid dehydrate platinum and 2.3-pyrazinedicarboxylic acid dehydrate platinum),which were concurrently provided with hydrophilic carboxyl group and lipophilic pyrazinyl or pyridyl group,on SW620 colorectal cancer cell line and the impact of the two compounds on the cell cycle and apoptosis of the cells when compared with the oxaliplatin,desiring the new ligand combined with hydrophilic and lipophilic properties would facilitate the transportation and transmembrane of the drugs,showing a better antitumor activity.Methods:After SW620 cells were treated with different doses of the three platinum-based agents for 24,48 and 72 h,the cell proliferation inhibition rate was determined using methyl thiazolyl tetrazolium(MTT) assay;the morphology of cells were evaluated under inverted microscope;the changes in cell cycle were determined using flow cytometry;the percent apoptosis was measured using Annexin V/PI double staining and the micromorphology of the cells after drug exposure was evaluated using scanning electron microscopy.Results:The evaluation on the proliferation inhibition rate revealed that the three platinum-based agents inhibited the SW620 cells in a time-and dose-dependent manner and showed different strengths as pyridine > pyrazine > Oxa.Under optical microscope,the morphological changes such as cell shrinkage,round cells and dead cells were frequently observed after drug exposure.Cell cycle determination showed that all of the three agents could function to block the cells converting from phase S to phase G2M.Apoptosis evaluation revealed that the three agents promoted the apoptosis of SW620 cells in a time-and dose-dependent manner and showed different strengths as pyridine > pyrazine > Oxa.Typical early and late apoptotic morphological changes could be detected during electron microscopy.Conclusion:The two novel platinum-based(II) complexes showed a stronger antitumor effect on SW620 cells than oxaliplatin,with the targeted site at a certain phase of cell cycle and apoptosis.展开更多
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t...Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.展开更多
In the past decade,the advent of the epidermal growth factor receptor-tyrosine kinase inhibitors(EGFR-TKIs)has dramatically influenced the therapeutic strategies for treating lung cancer,but with tumor progression and...In the past decade,the advent of the epidermal growth factor receptor-tyrosine kinase inhibitors(EGFR-TKIs)has dramatically influenced the therapeutic strategies for treating lung cancer,but with tumor progression and drug resistance,patients will ultimately develop reduced sensitivity to EGFR-TKIs.How can we delay the emergence of drug resistance? What is the next strategy after drug resistance? How to reasonably combine platinum-based chemotherapy and EGFR-TKIs? These questions are currently the focus of lung cancer research.Clinical studies have reported that platinum-based chemotherapy can increase the sensitivity to EGFR-TKIs.However,results of pre-clinical and clinical studies have been inconsistent.The mechanisms of platinum chemotherapy and EGFR-TKIs are still unknown due to the lack of systematic research.Therefore,systematic studies are required to show the mechanisms of EGFR-TKIs and chemotherapy agents and define the markers sensitive to their combinations when given concurrently or sequentially.展开更多
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext...This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86.展开更多
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther...Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects.展开更多
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa...Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.展开更多
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co...Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process...Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:51702352,21975280,22102208,52173234,52202214Young Elite Scientist Sponsorship Program by CAST,Grant/Award Number:YESS20210226+3 种基金Shenzhen Science and Technology Program,Grant/Award Numbers:RCJC20200714114435061,JCYJ20210324102008023,JSGG20210802153408024Shenzhen-Hong Kong-Macao Technology Research Program,Grant/Award Number:Type C,SGDX2020110309300301Natural Science Foundation of Guangdong Province,Grant/Award Numbers:2022A1515010554,2023A1515030178CCF-Tencent Open Fund and Innovation and Program for Excellent Young Researchers of SIAT,Grant/Award Number:E1G041。
文摘Owing to increasing global demand for carbon neutral and fossil-free energy systems,extensive research is being conducted on efficient and inexpensive electrocatalysts for catalyzing the kinetically sluggish oxygen reduction reaction(ORR)at the cathode of fuel cells.Platinum(Pt)-based alloys are considered promising candidates for replacing expensive Pt catalysts.However,the current screening process of Pt-based alloys is time-consuming and labor-intensive,and the descriptor for predicting the activity of Pt-based catalysts is generally inaccurate.This study proposed a strategy by combining high-throughput first-principles calculations and machine learning to explore the descriptor used for screening Pt-based alloy catalysts with high Pt utilization and low Pt consump-tion.Among the 77 prescreened candidates,we identified 5 potential candidates for catalyzing ORR with low overpotential.Furthermore,during the second and third rounds of active learning,more Pt-based alloys ORR candidates are identi-fied based on the relationship between structural features of Pt-based alloys and their activity.In addition,we highlighted the role of structural features in Pt-based alloys and found that the difference between the electronegativity of Pt and heteroatom,the valence electrons number of the heteroatom,and the ratio of heteroatoms around Pt are the main factors that affect the activity of ORR.More importantly,the combination of those structural features can be used as structural descriptor for predicting the activity of Pt-based alloys.We believe the findings of this study will provide new insight for predicting ORR activ-ity and contribute to exploring Pt-based electrocatalysts with high Pt utiliza-tion and low Pt consumption experimentally.
基金supported by the National Key Research and Development Plan of China(No.2017YFC1309100)the National Science Fund for Distinguished Young Scholars(No.81925023)the National Natural Scientific Foundation of China(No.81771912,81901910,82072090,and 82001986)。
文摘Objective:To develop and validate a radiomics prognostic scoring system(RPSS)for prediction of progressionfree survival(PFS)in patients with stageⅣnon-small cell lung cancer(NSCLC)treated with platinum-based chemotherapy.Methods:In this retrospective study,four independent cohorts of stageⅣNSCLC patients treated with platinum-based chemotherapy were included for model construction and validation(Discovery:n=159;Internal validation:n=156;External validation:n=81,Mutation validation:n=64).First,a total of 1,182 three-dimensional radiomics features were extracted from pre-treatment computed tomography(CT)images of each patient.Then,a radiomics signature was constructed using the least absolute shrinkage and selection operator method(LASSO)penalized Cox regression analysis.Finally,an individualized prognostic scoring system incorporating radiomics signature and clinicopathologic risk factors was proposed for PFS prediction.Results:The established radiomics signature consisting of 16 features showed good discrimination for classifying patients with high-risk and low-risk progression to chemotherapy in all cohorts(All P<0.05).On the multivariable analysis,independent factors for PFS were radiomics signature,performance status(PS),and N stage,which were all selected into construction of RPSS.The RPSS showed significant prognostic performance for predicting PFS in discovery[C-index:0.772,95%confidence interval(95%CI):0.765-0.779],internal validation(C-index:0.738,95%CI:0.730-0.746),external validation(C-index:0.750,95%CI:0.734-0.765),and mutation validation(Cindex:0.739,95%CI:0.720-0.758).Decision curve analysis revealed that RPSS significantly outperformed the clinicopathologic-based model in terms of clinical usefulness(All P<0.05).Conclusions:This study established a radiomics prognostic scoring system as RPSS that can be conveniently used to achieve individualized prediction of PFS probability for stageⅣNSCLC patients treated with platinumbased chemotherapy,which holds promise for guiding personalized pre-therapy of stageⅣNSCLC.
基金supported by the National High-tech R&D Program of China(863 Program)(2012AA02A517)National Natural Science Foundation of China(81173129,81202595,81373490,81273595)
文摘Background:Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer(NSCLC);it is therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this treatment.Four important transporter genes are expressed in the kidney,including organic cation transporter 2(OCT2),multidrug and toxin extrusion 1(MATEl),ATP-binding cassette subfamily B member 1 {ABCB1),and ATP-binding cassette subfamily C member 2(ABCC2),and genetic polymorphisms in these genes may alter the efficacy and adverse effects of platinum drugs.This study aimed to evaluate the association of genetic polymorphisms of these transporters with platinumbased chemotherapy response and toxicity in NSCLC patients.Methods:A total of 403 Chinese NSCLC patients were recruited for this study.All patients were newly diagnosed with NSCLC and received at least two cycles of platinum-based chemotherapy.The tumor response and toxicity were evaluated after two cycles of treatment,and the patients' genomic DNA was extracted.Seven single-nucleotide polymorphisms in four transporter genes were selected to investigate their associations with platinum-based chemotherapy toxicity and response.Results:OCT2 rs316019 was associated with hepatotoxicity(P = 0.026) and hematological toxicity(P = 0.039),and MATEl rs2289669 was associated with hematological toxicity induced by platinum(P = 0.016).In addition,ABCC2rs717620 was significantly associated with the platinum-based chemotherapy response(P = 0.031).ABCB1 polymorphisms were associated with neither response nor toxicity.Conclusion:OCT2 rs316019,MATEl rs2289669,and ABCC2 rs717620 might be potential clinical markers for predicting chemotherapy toxicity and response induced by platinum-based treatment in NSCLC patients.Trial registration Chinese Clinical Trial Registry
基金the National Natural Science Foundation of China(No.81703215,81974381)Beijing Xisike Clinical Oncology Research Foundation(No.Y-Q201801-059,81974381)。
文摘Objective This study assessed the weight loss changes and gastrointestinal symptoms in patients with advanced tumors receiving platinum-containing chemotherapy.Methods We retrospectively reviewed 297 patients with advanced cancers[124 gastrointestinal(GI)cancer patients,119 lung cancer patients and 54 head and neck cancer(HNC)patients]receiving first-line chemotherapy at Tongji Hospital.The patients’changes in body weight,body mass index(BMI),and biochemical parameters(serum haemoglobin and albumin levels)were compared before and after two chemotherapy cycles.Results More than half[54.88%(163/297)]of the patients had experienced unintentional weight loss in the 6 months before chemotherapy,and weight loss≥5%and≥10%of the body mass was noted in 35.69%and 20.20%of the patients,respectively.After two cycles of platinum-based chemotherapy,the proportions of patients with a>5%reduction in body weight among patients with GI,lung,and head and neck cancers were 47.5%(59/124),44.53%(53/119),and 46.2%(25/54),respectively.The patients with GI and lung cancers were more vulnerable to extreme weight loss(≥10%)than those with HNC(P=0.025).The serum hemoglobin levels were also remarkably decreased relative to those before chemotherapy(all P<0.05).Common GI symptoms reported by all patients included anorexia(61.28%),vomiting(52.53%),and nausea(51.18%).A higher proportion of patients with≥10%weight loss experienced anorexia and vomiting(OR=12.21 and 3.61,P=0.008 and 0.047,respectively).Conclusions For advanced cancer patients receiving platinum-based chemotherapy,the GI symptoms are the major factor related to their nutritional status.Appropriate nutritional screening,evaluation and treatment should be applied during the treatment of cancer in order to reduce GI symptoms and improve the patient’s nutritional status.
基金supported by the National Natural the Science Foundation of China(51971042,51901028)the Chongqing Academician Special Fund(cstc2020yszxjcyj X0001)+1 种基金the China Scholarship Council(CSC)Norwegian University of Science and Technology(NTNU)for their financial and technical support。
文摘Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
文摘Cisplatin resistance still remains a major obstacle to successful treatment of cancer.The development of cellular resistance to platinum-based chemotherapies is often associated with reduced intracellular platinum concentrations.In some models,this reduction is due to abnormal membrane protein trafficking,resulting in reduced uptake by transporters at the cell surface.Given the central role of platinum drugs in the clinic.
文摘The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-prepared and annealed samples,The results on the technical magnetic properties of this alloy system have been discussed and compared with Masumoto's.
基金The national SME technology innovation fund(11C26215305898)Kunming SME technology innovation fund(CJ2011040)
文摘The residual metal impurities in cisplatin, carboplatin and oxaliplatin were determined by ICP-AES. The samples were ignited and dissolved with HCl:HNO 3 (3:1). The method is simple and accurate. By the determination of the metal residues in the samples, the calculated actual daily exposure and concentration of the metal Pd, Ir, Rh, Ru, Mo, Ni, Cr, V, Cu, Mn, Fe and Zn that were less than the permitted daily exposures (PDE) and the limited concentration permitted in the EMEA guideline on the specification limits for residues of metal catalysts or metal reagents [1] . The metal residues can de adequately removed from the active pharmaceutical ingredients and the corresponding drugs. The trace metal residues will not affect human health and lead to the safety hazard by the intravenous injection.
基金funded by the National Natural Science Foundation of China(Nos.51801189)The Central Guidance on Local Science and Technology Development Fund of Shanxi Province(Nos.YDZJTSX2021A027)+2 种基金The National Natural Science Foundation of China(Nos.51801189)The Science and Technology Major Project of Shanxi Province(No.20191102008,20191102007)The North University of China Youth Academic Leader Project(No.11045505).
文摘This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.
基金financially supported by the Young Individual Research Grants(Grant No:M22K3c0097)Singapore RIE 2025 plan and Singapore Aerospace Programme Cycle 16(Grant No:M2215a0073)led by C Tan+2 种基金supported by the Singapore A*STAR Career Development Funds(Grant No:C210812047)the National Natural Science Foundation of China(52174361 and 52374385)the support by US NSF DMR-2104933。
文摘Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.
基金Supported by a grant from the National Nature Sciences Foundation of China (No. 20671064)
文摘Objective:The aim of our study was to evaluate the in vitro antitumor activity of two novel platinum-based(II) complexes(2.3-pyridinedicarboxylic acid dehydrate platinum and 2.3-pyrazinedicarboxylic acid dehydrate platinum),which were concurrently provided with hydrophilic carboxyl group and lipophilic pyrazinyl or pyridyl group,on SW620 colorectal cancer cell line and the impact of the two compounds on the cell cycle and apoptosis of the cells when compared with the oxaliplatin,desiring the new ligand combined with hydrophilic and lipophilic properties would facilitate the transportation and transmembrane of the drugs,showing a better antitumor activity.Methods:After SW620 cells were treated with different doses of the three platinum-based agents for 24,48 and 72 h,the cell proliferation inhibition rate was determined using methyl thiazolyl tetrazolium(MTT) assay;the morphology of cells were evaluated under inverted microscope;the changes in cell cycle were determined using flow cytometry;the percent apoptosis was measured using Annexin V/PI double staining and the micromorphology of the cells after drug exposure was evaluated using scanning electron microscopy.Results:The evaluation on the proliferation inhibition rate revealed that the three platinum-based agents inhibited the SW620 cells in a time-and dose-dependent manner and showed different strengths as pyridine > pyrazine > Oxa.Under optical microscope,the morphological changes such as cell shrinkage,round cells and dead cells were frequently observed after drug exposure.Cell cycle determination showed that all of the three agents could function to block the cells converting from phase S to phase G2M.Apoptosis evaluation revealed that the three agents promoted the apoptosis of SW620 cells in a time-and dose-dependent manner and showed different strengths as pyridine > pyrazine > Oxa.Typical early and late apoptotic morphological changes could be detected during electron microscopy.Conclusion:The two novel platinum-based(II) complexes showed a stronger antitumor effect on SW620 cells than oxaliplatin,with the targeted site at a certain phase of cell cycle and apoptosis.
基金financially supported by the Key Scientific Research Project in Shanxi Province,China(No.202102050201003)the National Natural Science Foundation of China(No.52071227)+2 种基金the Natural Science Foundation of Shanxi Province,China(No.202103021223293)the Central Guiding Science and Technology Development of Local Fund,China(No.YDZJSK20231A046)the Postgraduate Education Innovation Project of Shanxi Province,China(No.2023Y686)。
文摘Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.
文摘In the past decade,the advent of the epidermal growth factor receptor-tyrosine kinase inhibitors(EGFR-TKIs)has dramatically influenced the therapeutic strategies for treating lung cancer,but with tumor progression and drug resistance,patients will ultimately develop reduced sensitivity to EGFR-TKIs.How can we delay the emergence of drug resistance? What is the next strategy after drug resistance? How to reasonably combine platinum-based chemotherapy and EGFR-TKIs? These questions are currently the focus of lung cancer research.Clinical studies have reported that platinum-based chemotherapy can increase the sensitivity to EGFR-TKIs.However,results of pre-clinical and clinical studies have been inconsistent.The mechanisms of platinum chemotherapy and EGFR-TKIs are still unknown due to the lack of systematic research.Therefore,systematic studies are required to show the mechanisms of EGFR-TKIs and chemotherapy agents and define the markers sensitive to their combinations when given concurrently or sequentially.
基金supported by the National Research Foundation of Korea(NRFgrant nos.2019R1A2C1085272 and RS-2023-00244478)funded by the Ministry of Science,ICT,and Future Planning(MSIP,South Korea)。
文摘This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86.
基金financially supported by the National Key Research and Development Program of China (No.2021YFB3701001)the National Natural Science Foundation of China (No.U2102212)+1 种基金the Shanghai Rising-Star Program (No.21QA1403200)the Shanghai Engineering Research Center for Metal Parts Green Remanufacture (No.19DZ2252900) from Shanghai Engineering Research Center Construction Project。
文摘Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects.
基金the National Natural Science Foundation of China Projects under Grant[Nos.51871211,U21A2049,52071220,51701129 and 51971054]Liaoning Province’s project of"Revitalizing Liaoning Talents"(XLYC1907062)+10 种基金the Doctor Startup Fund of Natural Science Foundation Program of Liaoning Province(No.2019-BS-200)the Strategic New Industry Development Special Foundation of Shenzhen(JCYJ20170306141749970)the funds of International Joint Laboratory for Light AlloysLiaoning Bai Qian Wan Talents Programthe Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)National Key Research and Development Program of China under Grant[Nos.2017YFB0702001 and 2016YFB0301105]the Innovation Fund of Institute of Metal Research(IMR)Chinese Academy of Sciences(CAS)the National Basic Research Program of China(973 Program)project under Grant No.2013CB632205the Fundamental Research Fund for the Central Universities under Grant[No.N2009006]Bintech-IMR R&D Program[No.GYY-JSBU-2022-009]。
文摘Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.
文摘Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金supported by the National Key Research and Development Program of China[grant No.2018YFB2001800]National Natural Science Foundation of China[grant No.51871184]Dalian High-level Talents Innovation Support Program[grant No.2021RD06]。
文摘Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.