期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multiple Auxiliary Information Based Deep Model for Collaborative Filtering 被引量:1
1
作者 Lin Yue Xiao-Xin Sun +2 位作者 Wen-Zhu Gao Guo-Zhong Feng Bang-Zuo Zhang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第4期668-681,共14页
With the ever-growing dynamicity, complexity, technique is proposed and becomes one of the most effective and volume of information resources, the recommendation techniques for solving the so-called problem of informa... With the ever-growing dynamicity, complexity, technique is proposed and becomes one of the most effective and volume of information resources, the recommendation techniques for solving the so-called problem of information overload. Traditional recommendation algorithms, such as collaborative filtering based on the user or item, only measure the degree of similarity between users or items with single criterion, i.e., ratings. According to the experience of previous studies, single criterion cannot accurately measure the similarity between user preferences or items. In recent years, the application of deep learning techniques has gained significant momentum in recommender systems for better understanding of user preferences, item characteristics, and historical interactions. In this work, we integrate plot information as auxiliary information into the denoising autoencoder (DAE), called SemRe-DCF, which aims at learning semantic representations of item descriptions and succeeds in capturing fine-grained semantic regularities by using vector arithmetic to get better rating prediction. The results manifest that the proposed method can effectively improve the accuracy of prediction and solve the cold start problem. 展开更多
关键词 semantic representation plot information denoising autoencoder collaborative filtering auxiliary information
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部