The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow...The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed.展开更多
The underground or open-pit methods are used for the extraction of mineral resources,each of which is divided into different categories.Coal is one of the mineral resources,which is exploited either by the surface or ...The underground or open-pit methods are used for the extraction of mineral resources,each of which is divided into different categories.Coal is one of the mineral resources,which is exploited either by the surface or the underground methods.The long-wall mining is one of the methods for the underground coal mining.In this method,which is a mechanized one,some machines such as the shearer or plow are used for the mining.The coal mine in Parvadeh,Tabas is a mechanized mine that is extracted by the long-wall mining.The modeling with particle flow code software was used in this mine for the evaluation of plow performance using the coal specifications.In this regard,the sample was first calibrated by sampling from the Parvadeh coal mine and performing the uniaxial and Brazilian tests on the model.Then,the modeling was done by constructing the model and using the variables such as the clearance angle and the linear velocity of the plow.After making 28 models for the plow,the best model of the plow was selected based on the maximum force applied to the machine in the X direction.Finally,the results of this study showed that the best plow performance is for a model with the clearance angle of zero and the linear velocity of 9 mm/min,and the maximum force applied to this model is equal to 39,000 kN in the X direction.展开更多
The plow of the submarine plowing trencher is one of the main functional mechanisms, and its optimization is very important. The design parameters play a very significant role in determining the requirements of the to...The plow of the submarine plowing trencher is one of the main functional mechanisms, and its optimization is very important. The design parameters play a very significant role in determining the requirements of the towing force of a vessel. A multi-objective genetic algorithm based on analytical models of the plow surface has been examined and applied in efforts to obtain optimal design of the plow. For a specific soil condition, the draft force and moldboard surface area which are the key parameters in the working process of the plow are optimized by finding the corresponding optimal values of the plow blade penetration angle and two surface angles of the main cutting blade of the plow. Parameters such as the moldboard side angle of deviation, moldboard lift angle, angular variation of the tangent line, and the spanning length are also analyzed with respect to the force of the moldboard surface along soil flow direction. Results show that the optimized plow has an improved plow performance. The draft forces of the main cutting blade and the moldboard are 10.6% and 7%, respectively, less than the original design. The standard deviation of Gaussian curvature of moldboard is lowered by 64.5%, which implies that the smoothness of the optimized moldboard surface is much greater than the original.展开更多
Combined with anti-waterlogging ditches, irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal sa- line-alkaline wetl...Combined with anti-waterlogging ditches, irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal sa- line-alkaline wetlands. Three treatments were employed, viz., control (CK), irrigated with 10 cm depth of TPME (I), and plowing to 20 cm deep before irrigating 10 cm depth ofTPME (IP). Results show that both I-treatment and IP-treatment could improve soil structure by decreasing bulk density by 5% and 8%. Irrigation with TPME containing low salinity stimulated salts leaching instead of accumulating. With anti-waterlogging ditches, salts were drained out of soil. Irrigation with 10 cm depth of TPME lowered total soluble salts in soil and sodium adsorption ration by 33% and 8%, respective!y, but there was no significant difference compared with CK, indicating that this irrigation rate was not heavy enough to remarkably reduce so!l salinity and sodicity, Thus, in-i: gation rate should be enhanced in order to reach better effects of desalinization and desodication. Irrigation with TPME significantly increased soil organic matter, alkali-hydrolyzable nitrogen and available phosphorus due to the abundant organic matter in TPME. Plowing increased soil air circulation, so as to enhance mineralization of organic matter and lead to the loss of organic matter; however, plowing significantly improvedsoil alkali-hydrolyzable nitrogen and available phosphorus. Improvements of physicochemical properties in I-treatment and IP-treatment both boosted soil microbial population and activity. Microbial biomass carbon increased significantly by 327% (I-treatment) and 451% (IP-treatment), while soil respiration increased significantly by 316% (I-treatment) and 386% (IP-treatment). Urease and dehydrogenase activities in both I-treatment and IP-treatment were significantly higher than that in CK. Phosphatase in IP-treatment was significantly higher than that in CK. Compared to I-treatment, IP-treatment improved all of the soil properties except for soil organic matter. The key to remediation of degraded sa- line-alkaline wetlands is to decrease soil salinity and sodicity; thus, irri- gation plus plowing could be an ideal method of soil remediation.展开更多
A general technique for modeling of the wear of machine parts using the theory of probability and mathematical statistics is developed,which is implemented through the example of plows of agricultural plows.Regulariti...A general technique for modeling of the wear of machine parts using the theory of probability and mathematical statistics is developed,which is implemented through the example of plows of agricultural plows.Regularities of their wear during working under mountainous conditions are established,an adequate probabilistic-statistic mathematical model is obtained,general characteristics of the distribution of wear are determined using statistical moments and their most common(modal)values are determined which allow to substantiate the method of restoring worn parts for the purpose of increasing their life.This technique can also be utilized to study the regularity of wear of parts of other machines.展开更多
ALTHOUGH Zhao Zijian's business card shows his office is in Beijing, he spends half the year on business trips to Africa. Zhao, who hails from central ChinEs Henan Province. has been in the agricultural and construct...ALTHOUGH Zhao Zijian's business card shows his office is in Beijing, he spends half the year on business trips to Africa. Zhao, who hails from central ChinEs Henan Province. has been in the agricultural and construction machinery business for decades, and is now the general manager of China- Africa Machinery Corp. (CAMACO). He is involved in agricultural and construction machinery investment and trade in Africa.展开更多
With the rapid development of semiconductors,the number of materials needed to be polished sharply increases.The material properties vary significantly,posing challenges to chemical mechanical polishing(CMP).According...With the rapid development of semiconductors,the number of materials needed to be polished sharply increases.The material properties vary significantly,posing challenges to chemical mechanical polishing(CMP).Accordingly,the study aimed to classify the material removal mechanism.Based on the CMP and atomic force microscopy results,the six representative metals can be preliminarily classified into two groups,presumably due to different material removal modes.From the tribology perspective,the first group of Cu,Co,and Ni may mainly rely on the mechanical plowing effect.After adding H_(2)O_(2),corrosion can be first enhanced and then suppressed,affecting the surface mechanical strength.Consequently,the material removal rate(MRR)and the surface roughness increase and decrease.By comparison,the second group of Ta,Ru,and Ti may primarily depend on the chemical bonding effect.Adding H_(2)O_(2)can promote oxidation,increasing interfacial chemical bonds.Therefore,the MRR increases,and the surface roughness decreases and levels off.In addition,CMP can be regulated by tuning the synergistic effect of oxidation,complexation,and dissolution for mechanical plowing,while tuning the synergistic effect of oxidation and ionic strength for chemical bonding.The findings provide mechanistic insight into the material removal mechanism in CMP.展开更多
Recognition of the boundaries of farmland plow areas has an important guiding role in the operation of intelligent agricultural equipment.To precisely recognize these boundaries,a detection method for unmanned tractor...Recognition of the boundaries of farmland plow areas has an important guiding role in the operation of intelligent agricultural equipment.To precisely recognize these boundaries,a detection method for unmanned tractor plow areas based on RGB-Depth(RGB-D)cameras was proposed,and the feasibility of the detection method was analyzed.This method applied advanced computer vision technology to the field of agricultural automation.Adopting and improving the YOLOv5-seg object segmentation algorithm,first,the Convolutional Block Attention Module(CBAM)was integrated into Concentrated-Comprehensive Convolution Block(C3)to form C3CBAM,thereby enhancing the ability of the network to extract features from plow areas.The GhostConv module was also utilized to reduce parameter and computational complexity.Second,using the depth image information provided by the RGB-D camera combined with the results recognized by the YOLOv5-seg model,the mask image was processed to extract contour boundaries,align the contours with the depth map,and obtain the boundary distance information of the plowed area.Last,based on farmland information,the calculated average boundary distance was corrected,further improving the accuracy of the distance measurements.The experiment results showed that the YOLOv5-seg object segmentation algorithm achieved a recognition accuracy of 99%for plowed areas and that the ranging accuracy improved with decreasing detection distance.The ranging error at 5.5 m was approximately 0.056 m,and the average detection time per frame is 29 ms,which can meet the real-time operational requirements.The results of this study can provide precise guarantees for the autonomous operation of unmanned plowing units.展开更多
A macroscopically nominal flat surface is rough at the nanoscale level and consists of nanoasperities.Therefore,the frictional properties of the macroscale-level rough surface are determined by the mechanical behavior...A macroscopically nominal flat surface is rough at the nanoscale level and consists of nanoasperities.Therefore,the frictional properties of the macroscale-level rough surface are determined by the mechanical behaviors of nanoasperity contact pairs under shear.In this work,we first used molecular dynamics simulations to study the non-adhesive shear between single contact pairs.Subsequently,to estimate the friction coefficient of rough surfaces,we implemented the frictional behavior of a single contact pair into a Greenwood-Williamson-type statistical model.By employing the present multiscale approach,we used the size,rate,and orientation effects,which originated from nanoscale dislocation plasticity,to determine the dependence of the macroscale friction coefficient on system parameters,such as the surface roughness,separation,loading velocity,and direction.Our model predicts an unconventional dependence of the friction coefficient on the normal contact load,which has been observed in nanoscale frictional tests.Therefore,this model represents one step toward understanding some of the relevant macroscopic phenomena of surface friction at the nanoscale level.展开更多
The energy and draft requirements of a disk plow have been recognized as essential factors when attempting to correctly match it with tractor power.This study examines the possible of using an adaptive neuro-fuzzy inf...The energy and draft requirements of a disk plow have been recognized as essential factors when attempting to correctly match it with tractor power.This study examines the possible of using an adaptive neuro-fuzzy inference system(ANFIS)approach and its performance compared to a multiple linear regression(MLR)model to determine the energy and draft requirements of a disk plow.A total of 133 data patterns were obtained by conducting experiments in the field and from the literature.Of these 133 data points,121 were arbitrarily selected and used for training,and the remaining 12 were used for testing the models.The input variables were plowing depth,plowing speed,soil texture index,initial soil moisture content,initial soil bulk density,disk diameter,disk angle,and disk tilt angle,and output variable was draft of the disk plow.Four membership functions were used with ANFIS:a triangular membership function,generalized bell-shaped membership function,trapezoidal membership function,and Gaussian curve membership function.An evaluation of the outcomes of the ANFIS and MLR modeling shows that the triangular membership function performed better than the other functions.When the ANFIS model draft predictions were compared to the measured values,the average relative error was-1.97%.A comparison of the ANFIS model with other approaches showed that the energy and draft requirements of the disk plow could be estimated with satisfactory accuracy.展开更多
A two-year experiment was established in northern Xinjiang to investigate the effects of autumn plowing methods on nitrate nitrogen accumulation,spring-sown soil conditions and cotton emergence rate,and to explore the...A two-year experiment was established in northern Xinjiang to investigate the effects of autumn plowing methods on nitrate nitrogen accumulation,spring-sown soil conditions and cotton emergence rate,and to explore the response relationship between soil water,heat and nitrate nitrogen.The experiment included five autumn plowing treatments,namely,plough tillage(FG),no-tillage(MG),ridge and furrow alternation(LG),plough tillage with straw mulch(FJ)and plough tillage with activated charcoal mulch(FH).The results showed that both FH and FJ treatments were beneficial to promote the nitrate-nitrogen accumulation in topsoil,while FG,MG and LG treatments aggravated the nitrate nitrogen leaching in topsoil.During the freezing period,FH and FJ treatments were beneficial to reduce soil heat loss and facilitate the coordinated upward migration of soil water and nitrate nitrogen.In the thawing period,FH and FJ treatments favored suppressing the synergistic downward transport of soil water and nitrate-nitrogen and motivated the synergistic upward migration of heat and nitrate nitrogen in deep soil.Binary regression analysis suggested that the interaction between water,heat and nitrate nitrogen under FH and FJ treatments showed a highly significant correlation.FH and FJ treatments showed obvious advantages in regulating soil conditions and optimizing soil water,heat and nitrate nitrogen co-transport mechanism.During the spring sowing period,the FH and FJ treatments increased the average soil temperature by 0.99℃and 1.29℃,and the average soil moisture content by 6.01%and 8.70%,and the average soil nitrate content by 10.20 mg/kg and 10.47 mg/kg,in the 0-25 cm soil layer,respectively.FH and FJ treatments significantly grew the emergence rate of cotton,which can be used as the main autumn tillage strategies in arid areas of northern Xinjiang.展开更多
文摘The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed.
文摘The underground or open-pit methods are used for the extraction of mineral resources,each of which is divided into different categories.Coal is one of the mineral resources,which is exploited either by the surface or the underground methods.The long-wall mining is one of the methods for the underground coal mining.In this method,which is a mechanized one,some machines such as the shearer or plow are used for the mining.The coal mine in Parvadeh,Tabas is a mechanized mine that is extracted by the long-wall mining.The modeling with particle flow code software was used in this mine for the evaluation of plow performance using the coal specifications.In this regard,the sample was first calibrated by sampling from the Parvadeh coal mine and performing the uniaxial and Brazilian tests on the model.Then,the modeling was done by constructing the model and using the variables such as the clearance angle and the linear velocity of the plow.After making 28 models for the plow,the best model of the plow was selected based on the maximum force applied to the machine in the X direction.Finally,the results of this study showed that the best plow performance is for a model with the clearance angle of zero and the linear velocity of 9 mm/min,and the maximum force applied to this model is equal to 39,000 kN in the X direction.
基金Supported the National Natural Science Foundation of China (No. 51179040) Natural Science Foundation of Heilongjiang Province (No. E200904)
文摘The plow of the submarine plowing trencher is one of the main functional mechanisms, and its optimization is very important. The design parameters play a very significant role in determining the requirements of the towing force of a vessel. A multi-objective genetic algorithm based on analytical models of the plow surface has been examined and applied in efforts to obtain optimal design of the plow. For a specific soil condition, the draft force and moldboard surface area which are the key parameters in the working process of the plow are optimized by finding the corresponding optimal values of the plow blade penetration angle and two surface angles of the main cutting blade of the plow. Parameters such as the moldboard side angle of deviation, moldboard lift angle, angular variation of the tangent line, and the spanning length are also analyzed with respect to the force of the moldboard surface along soil flow direction. Results show that the optimized plow has an improved plow performance. The draft forces of the main cutting blade and the moldboard are 10.6% and 7%, respectively, less than the original design. The standard deviation of Gaussian curvature of moldboard is lowered by 64.5%, which implies that the smoothness of the optimized moldboard surface is much greater than the original.
基金financially supported by the National Science & Technology supporting Program of China (NO. 2010BAC68B01 NO. 2011BAC02B01)+1 种基金the Science and Technology Planning Program of Shandong Province (NO. 2008GG10006024 NO. 2008GG3NS07005)
文摘Combined with anti-waterlogging ditches, irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal sa- line-alkaline wetlands. Three treatments were employed, viz., control (CK), irrigated with 10 cm depth of TPME (I), and plowing to 20 cm deep before irrigating 10 cm depth ofTPME (IP). Results show that both I-treatment and IP-treatment could improve soil structure by decreasing bulk density by 5% and 8%. Irrigation with TPME containing low salinity stimulated salts leaching instead of accumulating. With anti-waterlogging ditches, salts were drained out of soil. Irrigation with 10 cm depth of TPME lowered total soluble salts in soil and sodium adsorption ration by 33% and 8%, respective!y, but there was no significant difference compared with CK, indicating that this irrigation rate was not heavy enough to remarkably reduce so!l salinity and sodicity, Thus, in-i: gation rate should be enhanced in order to reach better effects of desalinization and desodication. Irrigation with TPME significantly increased soil organic matter, alkali-hydrolyzable nitrogen and available phosphorus due to the abundant organic matter in TPME. Plowing increased soil air circulation, so as to enhance mineralization of organic matter and lead to the loss of organic matter; however, plowing significantly improvedsoil alkali-hydrolyzable nitrogen and available phosphorus. Improvements of physicochemical properties in I-treatment and IP-treatment both boosted soil microbial population and activity. Microbial biomass carbon increased significantly by 327% (I-treatment) and 451% (IP-treatment), while soil respiration increased significantly by 316% (I-treatment) and 386% (IP-treatment). Urease and dehydrogenase activities in both I-treatment and IP-treatment were significantly higher than that in CK. Phosphatase in IP-treatment was significantly higher than that in CK. Compared to I-treatment, IP-treatment improved all of the soil properties except for soil organic matter. The key to remediation of degraded sa- line-alkaline wetlands is to decrease soil salinity and sodicity; thus, irri- gation plus plowing could be an ideal method of soil remediation.
文摘A general technique for modeling of the wear of machine parts using the theory of probability and mathematical statistics is developed,which is implemented through the example of plows of agricultural plows.Regularities of their wear during working under mountainous conditions are established,an adequate probabilistic-statistic mathematical model is obtained,general characteristics of the distribution of wear are determined using statistical moments and their most common(modal)values are determined which allow to substantiate the method of restoring worn parts for the purpose of increasing their life.This technique can also be utilized to study the regularity of wear of parts of other machines.
文摘ALTHOUGH Zhao Zijian's business card shows his office is in Beijing, he spends half the year on business trips to Africa. Zhao, who hails from central ChinEs Henan Province. has been in the agricultural and construction machinery business for decades, and is now the general manager of China- Africa Machinery Corp. (CAMACO). He is involved in agricultural and construction machinery investment and trade in Africa.
基金support by the National Natural Science Foundation of China(51975488 and 51991373)National Key R&D Program of China(2020YFA0711001)Fundamental Research Funds for the Central Universities(2682021CG011).
文摘With the rapid development of semiconductors,the number of materials needed to be polished sharply increases.The material properties vary significantly,posing challenges to chemical mechanical polishing(CMP).Accordingly,the study aimed to classify the material removal mechanism.Based on the CMP and atomic force microscopy results,the six representative metals can be preliminarily classified into two groups,presumably due to different material removal modes.From the tribology perspective,the first group of Cu,Co,and Ni may mainly rely on the mechanical plowing effect.After adding H_(2)O_(2),corrosion can be first enhanced and then suppressed,affecting the surface mechanical strength.Consequently,the material removal rate(MRR)and the surface roughness increase and decrease.By comparison,the second group of Ta,Ru,and Ti may primarily depend on the chemical bonding effect.Adding H_(2)O_(2)can promote oxidation,increasing interfacial chemical bonds.Therefore,the MRR increases,and the surface roughness decreases and levels off.In addition,CMP can be regulated by tuning the synergistic effect of oxidation,complexation,and dissolution for mechanical plowing,while tuning the synergistic effect of oxidation and ionic strength for chemical bonding.The findings provide mechanistic insight into the material removal mechanism in CMP.
基金financially supported by the National Key Research and Development Program(NKRDP)projects(Grant No.2023YFD2001100)Major Science and Technology Programs in Henan Province(Grant No.221100110800)Major Science and Technology Special Project of Henan Province(Longmen Laboratory First-class Project)(Grant No.231100220200).
文摘Recognition of the boundaries of farmland plow areas has an important guiding role in the operation of intelligent agricultural equipment.To precisely recognize these boundaries,a detection method for unmanned tractor plow areas based on RGB-Depth(RGB-D)cameras was proposed,and the feasibility of the detection method was analyzed.This method applied advanced computer vision technology to the field of agricultural automation.Adopting and improving the YOLOv5-seg object segmentation algorithm,first,the Convolutional Block Attention Module(CBAM)was integrated into Concentrated-Comprehensive Convolution Block(C3)to form C3CBAM,thereby enhancing the ability of the network to extract features from plow areas.The GhostConv module was also utilized to reduce parameter and computational complexity.Second,using the depth image information provided by the RGB-D camera combined with the results recognized by the YOLOv5-seg model,the mask image was processed to extract contour boundaries,align the contours with the depth map,and obtain the boundary distance information of the plowed area.Last,based on farmland information,the calculated average boundary distance was corrected,further improving the accuracy of the distance measurements.The experiment results showed that the YOLOv5-seg object segmentation algorithm achieved a recognition accuracy of 99%for plowed areas and that the ranging accuracy improved with decreasing detection distance.The ranging error at 5.5 m was approximately 0.056 m,and the average detection time per frame is 29 ms,which can meet the real-time operational requirements.The results of this study can provide precise guarantees for the autonomous operation of unmanned plowing units.
文摘A macroscopically nominal flat surface is rough at the nanoscale level and consists of nanoasperities.Therefore,the frictional properties of the macroscale-level rough surface are determined by the mechanical behaviors of nanoasperity contact pairs under shear.In this work,we first used molecular dynamics simulations to study the non-adhesive shear between single contact pairs.Subsequently,to estimate the friction coefficient of rough surfaces,we implemented the frictional behavior of a single contact pair into a Greenwood-Williamson-type statistical model.By employing the present multiscale approach,we used the size,rate,and orientation effects,which originated from nanoscale dislocation plasticity,to determine the dependence of the macroscale friction coefficient on system parameters,such as the surface roughness,separation,loading velocity,and direction.Our model predicts an unconventional dependence of the friction coefficient on the normal contact load,which has been observed in nanoscale frictional tests.Therefore,this model represents one step toward understanding some of the relevant macroscopic phenomena of surface friction at the nanoscale level.
文摘The energy and draft requirements of a disk plow have been recognized as essential factors when attempting to correctly match it with tractor power.This study examines the possible of using an adaptive neuro-fuzzy inference system(ANFIS)approach and its performance compared to a multiple linear regression(MLR)model to determine the energy and draft requirements of a disk plow.A total of 133 data patterns were obtained by conducting experiments in the field and from the literature.Of these 133 data points,121 were arbitrarily selected and used for training,and the remaining 12 were used for testing the models.The input variables were plowing depth,plowing speed,soil texture index,initial soil moisture content,initial soil bulk density,disk diameter,disk angle,and disk tilt angle,and output variable was draft of the disk plow.Four membership functions were used with ANFIS:a triangular membership function,generalized bell-shaped membership function,trapezoidal membership function,and Gaussian curve membership function.An evaluation of the outcomes of the ANFIS and MLR modeling shows that the triangular membership function performed better than the other functions.When the ANFIS model draft predictions were compared to the measured values,the average relative error was-1.97%.A comparison of the ANFIS model with other approaches showed that the energy and draft requirements of the disk plow could be estimated with satisfactory accuracy.
基金supported by the National Natural Science Foundation of China(U1803244)National Key R&D Program of China(2017YFC0404304).
文摘A two-year experiment was established in northern Xinjiang to investigate the effects of autumn plowing methods on nitrate nitrogen accumulation,spring-sown soil conditions and cotton emergence rate,and to explore the response relationship between soil water,heat and nitrate nitrogen.The experiment included five autumn plowing treatments,namely,plough tillage(FG),no-tillage(MG),ridge and furrow alternation(LG),plough tillage with straw mulch(FJ)and plough tillage with activated charcoal mulch(FH).The results showed that both FH and FJ treatments were beneficial to promote the nitrate-nitrogen accumulation in topsoil,while FG,MG and LG treatments aggravated the nitrate nitrogen leaching in topsoil.During the freezing period,FH and FJ treatments were beneficial to reduce soil heat loss and facilitate the coordinated upward migration of soil water and nitrate nitrogen.In the thawing period,FH and FJ treatments favored suppressing the synergistic downward transport of soil water and nitrate-nitrogen and motivated the synergistic upward migration of heat and nitrate nitrogen in deep soil.Binary regression analysis suggested that the interaction between water,heat and nitrate nitrogen under FH and FJ treatments showed a highly significant correlation.FH and FJ treatments showed obvious advantages in regulating soil conditions and optimizing soil water,heat and nitrate nitrogen co-transport mechanism.During the spring sowing period,the FH and FJ treatments increased the average soil temperature by 0.99℃and 1.29℃,and the average soil moisture content by 6.01%and 8.70%,and the average soil nitrate content by 10.20 mg/kg and 10.47 mg/kg,in the 0-25 cm soil layer,respectively.FH and FJ treatments significantly grew the emergence rate of cotton,which can be used as the main autumn tillage strategies in arid areas of northern Xinjiang.