One improved mixing-extruding machine was introduced as the second-generation product of the mixing-molding integrated technology. In the extruding system,the conventional single screw extruder was substituted by a sp...One improved mixing-extruding machine was introduced as the second-generation product of the mixing-molding integrated technology. In the extruding system,the conventional single screw extruder was substituted by a special conical twin-screw extruder,resulting in stronger feeding ability,more stable extrusion pressure,and better quality of products. The integrated mathematical model of mixing-extruding process was also established by theoretical derivation and optimization according to the experimental results.Then its accuracy was verified by the influences of the pressure of floating weight and the cooling water temperature of extruder on the mixing-extruding integrated process. The results showed that the changes of both parameters could give rise to the fluctuation of the temperature and apparent viscosity of polyblends, thus further influencing the screw rotation speed.展开更多
The plow of the submarine plowing trencher is one of the main functional mechanisms, and its optimization is very important. The design parameters play a very significant role in determining the requirements of the to...The plow of the submarine plowing trencher is one of the main functional mechanisms, and its optimization is very important. The design parameters play a very significant role in determining the requirements of the towing force of a vessel. A multi-objective genetic algorithm based on analytical models of the plow surface has been examined and applied in efforts to obtain optimal design of the plow. For a specific soil condition, the draft force and moldboard surface area which are the key parameters in the working process of the plow are optimized by finding the corresponding optimal values of the plow blade penetration angle and two surface angles of the main cutting blade of the plow. Parameters such as the moldboard side angle of deviation, moldboard lift angle, angular variation of the tangent line, and the spanning length are also analyzed with respect to the force of the moldboard surface along soil flow direction. Results show that the optimized plow has an improved plow performance. The draft forces of the main cutting blade and the moldboard are 10.6% and 7%, respectively, less than the original design. The standard deviation of Gaussian curvature of moldboard is lowered by 64.5%, which implies that the smoothness of the optimized moldboard surface is much greater than the original.展开更多
Combined with anti-waterlogging ditches, irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal sa- line-alkaline wetl...Combined with anti-waterlogging ditches, irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal sa- line-alkaline wetlands. Three treatments were employed, viz., control (CK), irrigated with 10 cm depth of TPME (I), and plowing to 20 cm deep before irrigating 10 cm depth ofTPME (IP). Results show that both I-treatment and IP-treatment could improve soil structure by decreasing bulk density by 5% and 8%. Irrigation with TPME containing low salinity stimulated salts leaching instead of accumulating. With anti-waterlogging ditches, salts were drained out of soil. Irrigation with 10 cm depth of TPME lowered total soluble salts in soil and sodium adsorption ration by 33% and 8%, respective!y, but there was no significant difference compared with CK, indicating that this irrigation rate was not heavy enough to remarkably reduce so!l salinity and sodicity, Thus, in-i: gation rate should be enhanced in order to reach better effects of desalinization and desodication. Irrigation with TPME significantly increased soil organic matter, alkali-hydrolyzable nitrogen and available phosphorus due to the abundant organic matter in TPME. Plowing increased soil air circulation, so as to enhance mineralization of organic matter and lead to the loss of organic matter; however, plowing significantly improvedsoil alkali-hydrolyzable nitrogen and available phosphorus. Improvements of physicochemical properties in I-treatment and IP-treatment both boosted soil microbial population and activity. Microbial biomass carbon increased significantly by 327% (I-treatment) and 451% (IP-treatment), while soil respiration increased significantly by 316% (I-treatment) and 386% (IP-treatment). Urease and dehydrogenase activities in both I-treatment and IP-treatment were significantly higher than that in CK. Phosphatase in IP-treatment was significantly higher than that in CK. Compared to I-treatment, IP-treatment improved all of the soil properties except for soil organic matter. The key to remediation of degraded sa- line-alkaline wetlands is to decrease soil salinity and sodicity; thus, irri- gation plus plowing could be an ideal method of soil remediation.展开更多
Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to...Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to produce fiat bar of A2017 alloy were carried oat. The forming process, metal flow behavior in die and microstructure and mechanical property of prodacts were investigated. It is shown that if the pouring temperature of melt was higher, the die was filled with semi-solid slurry with low solid fraction and periodical cracks would occur on the product surface ; If its pouring temperature was lower or the preheating temperature of die was lower, semisolid slurry would solidify rapidly and block the die after entering the cavity. The analysis of mass flow trace shows that the semi-solid slurry move forward layer by layer and fills the die extending cavity in radiation manner and the velocity of mass flow in the central area of extending cavity and exit of mould is the maximum, and then decreases gradually from the center to both sides of die wall. By inereasiug the die extending angle, the velocity of mass flow becomes more homogeneous. Under rational process control and die design, the A2017 fiat bar with transverse section of 10 × 50 mm and with good surface and fine equiaxed grains can be obtained by continuous extruding/extending forming process. The product's tensile strength and elongation are 420.5 MPa and 14.2% , respectively.展开更多
The Swift effect of Mg alloy is sensitive to initial texture.However,dislocation slip is the main deformation mechanism during torsion of Mg alloy.The underlying relation of Swift effect and dislocation slip is still ...The Swift effect of Mg alloy is sensitive to initial texture.However,dislocation slip is the main deformation mechanism during torsion of Mg alloy.The underlying relation of Swift effect and dislocation slip is still not clarified.The effect of stress state and pre-straining on Swift effect was studied experimentally during free-end torsion for an extruded AZ31 alloy.The free-end torsion was performed with axial tension and compression stress which is lower than yield stress.It is found that the transition of axial deformation from contraction to elongation occurs when the axial stress changes from negative to positive.The pre-dislocations introduced by pre-tension promote axial shortening during torsion.While the pre-twins introduced by pre-compression are inhibition of axial shortening.The change of axial deformation is attributed to competition between twinning and prismatic slip.The axial shortening of extruded Mg alloy is generated by tensile twinning leading to c-axis strain.In contrast,the axial elongation can be generated by the activation of prismatic slip.The magnitude of axial strain generated by twinning is larger than that by prismatic slip.Moreover,the occurrence of detwinning results in axial elongation at low shear strain.展开更多
In this paper, the kinematically admissible velocity field with surface crack on forward extruding bar is put forward during the axisymmetric cup-bar combined extrusion process, in accordance with the results of model...In this paper, the kinematically admissible velocity field with surface crack on forward extruding bar is put forward during the axisymmetric cup-bar combined extrusion process, in accordance with the results of model experiments.On the basis of velocity field, the necessary condition for surface crack formation on the forward extruding bar is derived, with the help of upper bound theorem and the minimum energy principle. Meanwhile, the relationships between surface crack formation and combination of reduction in area for the part of forward and backward extursions relative residual thickness of billet (T/R0),frictional factor (m) or relative land length of ram and chamber are calculated during the extrusion process. Therefore, whether the surface crack on forward exturding bar occurs can be predicted before extruding the lower-plasticity metals for axisymmetric cup-bar combined extrusion process.The analytical results agree very well with experimental results of aluminium alloy LY12 (ASTM 2024) and LC4 (ASTM 7075).展开更多
ALTHOUGH Zhao Zijian's business card shows his office is in Beijing, he spends half the year on business trips to Africa. Zhao, who hails from central ChinEs Henan Province. has been in the agricultural and construct...ALTHOUGH Zhao Zijian's business card shows his office is in Beijing, he spends half the year on business trips to Africa. Zhao, who hails from central ChinEs Henan Province. has been in the agricultural and construction machinery business for decades, and is now the general manager of China- Africa Machinery Corp. (CAMACO). He is involved in agricultural and construction machinery investment and trade in Africa.展开更多
The simulation of the upsetting-extruding process of dispersion strengthened copper welding electrode was carried out using Deform-2D finite element analysis software, and the characteristics of metal flow and the eff...The simulation of the upsetting-extruding process of dispersion strengthened copper welding electrode was carried out using Deform-2D finite element analysis software, and the characteristics of metal flow and the effect of different friction factors were analysed. The results show that the whole forming process consists of a forward extrusion and a backward extrusion. When the friction factor of the female die is 0.4, it is advantageous to the forward extrusion forming of the electrode work nose part, while the friction factor of the male die is only 0.1, it would be benefit to the backward extrusion forming of the electrode fit-up hole part. Addition of a scoop channel with 1.5 mm in depth and 4 mm in diameter at the bottom of the female die can avoid folds at the work nose. The rise in temperature is about 60 ℃ during the forming process.展开更多
基金National Natural Science Foundation of China(No.51345006)Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20123719120004)
文摘One improved mixing-extruding machine was introduced as the second-generation product of the mixing-molding integrated technology. In the extruding system,the conventional single screw extruder was substituted by a special conical twin-screw extruder,resulting in stronger feeding ability,more stable extrusion pressure,and better quality of products. The integrated mathematical model of mixing-extruding process was also established by theoretical derivation and optimization according to the experimental results.Then its accuracy was verified by the influences of the pressure of floating weight and the cooling water temperature of extruder on the mixing-extruding integrated process. The results showed that the changes of both parameters could give rise to the fluctuation of the temperature and apparent viscosity of polyblends, thus further influencing the screw rotation speed.
基金Supported the National Natural Science Foundation of China (No. 51179040) Natural Science Foundation of Heilongjiang Province (No. E200904)
文摘The plow of the submarine plowing trencher is one of the main functional mechanisms, and its optimization is very important. The design parameters play a very significant role in determining the requirements of the towing force of a vessel. A multi-objective genetic algorithm based on analytical models of the plow surface has been examined and applied in efforts to obtain optimal design of the plow. For a specific soil condition, the draft force and moldboard surface area which are the key parameters in the working process of the plow are optimized by finding the corresponding optimal values of the plow blade penetration angle and two surface angles of the main cutting blade of the plow. Parameters such as the moldboard side angle of deviation, moldboard lift angle, angular variation of the tangent line, and the spanning length are also analyzed with respect to the force of the moldboard surface along soil flow direction. Results show that the optimized plow has an improved plow performance. The draft forces of the main cutting blade and the moldboard are 10.6% and 7%, respectively, less than the original design. The standard deviation of Gaussian curvature of moldboard is lowered by 64.5%, which implies that the smoothness of the optimized moldboard surface is much greater than the original.
基金financially supported by the National Science & Technology supporting Program of China (NO. 2010BAC68B01 NO. 2011BAC02B01)+1 种基金the Science and Technology Planning Program of Shandong Province (NO. 2008GG10006024 NO. 2008GG3NS07005)
文摘Combined with anti-waterlogging ditches, irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal sa- line-alkaline wetlands. Three treatments were employed, viz., control (CK), irrigated with 10 cm depth of TPME (I), and plowing to 20 cm deep before irrigating 10 cm depth ofTPME (IP). Results show that both I-treatment and IP-treatment could improve soil structure by decreasing bulk density by 5% and 8%. Irrigation with TPME containing low salinity stimulated salts leaching instead of accumulating. With anti-waterlogging ditches, salts were drained out of soil. Irrigation with 10 cm depth of TPME lowered total soluble salts in soil and sodium adsorption ration by 33% and 8%, respective!y, but there was no significant difference compared with CK, indicating that this irrigation rate was not heavy enough to remarkably reduce so!l salinity and sodicity, Thus, in-i: gation rate should be enhanced in order to reach better effects of desalinization and desodication. Irrigation with TPME significantly increased soil organic matter, alkali-hydrolyzable nitrogen and available phosphorus due to the abundant organic matter in TPME. Plowing increased soil air circulation, so as to enhance mineralization of organic matter and lead to the loss of organic matter; however, plowing significantly improvedsoil alkali-hydrolyzable nitrogen and available phosphorus. Improvements of physicochemical properties in I-treatment and IP-treatment both boosted soil microbial population and activity. Microbial biomass carbon increased significantly by 327% (I-treatment) and 451% (IP-treatment), while soil respiration increased significantly by 316% (I-treatment) and 386% (IP-treatment). Urease and dehydrogenase activities in both I-treatment and IP-treatment were significantly higher than that in CK. Phosphatase in IP-treatment was significantly higher than that in CK. Compared to I-treatment, IP-treatment improved all of the soil properties except for soil organic matter. The key to remediation of degraded sa- line-alkaline wetlands is to decrease soil salinity and sodicity; thus, irri- gation plus plowing could be an ideal method of soil remediation.
基金Funded by the National Natural Science Foundation of China(No.50274020) and Baoshan Iron &Steel Corporation of Shanghai
文摘Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to produce fiat bar of A2017 alloy were carried oat. The forming process, metal flow behavior in die and microstructure and mechanical property of prodacts were investigated. It is shown that if the pouring temperature of melt was higher, the die was filled with semi-solid slurry with low solid fraction and periodical cracks would occur on the product surface ; If its pouring temperature was lower or the preheating temperature of die was lower, semisolid slurry would solidify rapidly and block the die after entering the cavity. The analysis of mass flow trace shows that the semi-solid slurry move forward layer by layer and fills the die extending cavity in radiation manner and the velocity of mass flow in the central area of extending cavity and exit of mould is the maximum, and then decreases gradually from the center to both sides of die wall. By inereasiug the die extending angle, the velocity of mass flow becomes more homogeneous. Under rational process control and die design, the A2017 fiat bar with transverse section of 10 × 50 mm and with good surface and fine equiaxed grains can be obtained by continuous extruding/extending forming process. The product's tensile strength and elongation are 420.5 MPa and 14.2% , respectively.
基金Financial support from the projects by the NSFC(51771166)the Hebei Natural Science Foundation(E2019203452,E2021203011)+4 种基金the central government guiding local science and technology development(216Z1001G)the talent project of human resources and social security department of Hebei province(A202002002)the key project of department of education of Hebei province(ZD2021107)Graduate Innovation Program of Hebei province(CXZZBS2020053)The work was supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2020-013).
文摘The Swift effect of Mg alloy is sensitive to initial texture.However,dislocation slip is the main deformation mechanism during torsion of Mg alloy.The underlying relation of Swift effect and dislocation slip is still not clarified.The effect of stress state and pre-straining on Swift effect was studied experimentally during free-end torsion for an extruded AZ31 alloy.The free-end torsion was performed with axial tension and compression stress which is lower than yield stress.It is found that the transition of axial deformation from contraction to elongation occurs when the axial stress changes from negative to positive.The pre-dislocations introduced by pre-tension promote axial shortening during torsion.While the pre-twins introduced by pre-compression are inhibition of axial shortening.The change of axial deformation is attributed to competition between twinning and prismatic slip.The axial shortening of extruded Mg alloy is generated by tensile twinning leading to c-axis strain.In contrast,the axial elongation can be generated by the activation of prismatic slip.The magnitude of axial strain generated by twinning is larger than that by prismatic slip.Moreover,the occurrence of detwinning results in axial elongation at low shear strain.
文摘In this paper, the kinematically admissible velocity field with surface crack on forward extruding bar is put forward during the axisymmetric cup-bar combined extrusion process, in accordance with the results of model experiments.On the basis of velocity field, the necessary condition for surface crack formation on the forward extruding bar is derived, with the help of upper bound theorem and the minimum energy principle. Meanwhile, the relationships between surface crack formation and combination of reduction in area for the part of forward and backward extursions relative residual thickness of billet (T/R0),frictional factor (m) or relative land length of ram and chamber are calculated during the extrusion process. Therefore, whether the surface crack on forward exturding bar occurs can be predicted before extruding the lower-plasticity metals for axisymmetric cup-bar combined extrusion process.The analytical results agree very well with experimental results of aluminium alloy LY12 (ASTM 2024) and LC4 (ASTM 7075).
文摘ALTHOUGH Zhao Zijian's business card shows his office is in Beijing, he spends half the year on business trips to Africa. Zhao, who hails from central ChinEs Henan Province. has been in the agricultural and construction machinery business for decades, and is now the general manager of China- Africa Machinery Corp. (CAMACO). He is involved in agricultural and construction machinery investment and trade in Africa.
文摘The simulation of the upsetting-extruding process of dispersion strengthened copper welding electrode was carried out using Deform-2D finite element analysis software, and the characteristics of metal flow and the effect of different friction factors were analysed. The results show that the whole forming process consists of a forward extrusion and a backward extrusion. When the friction factor of the female die is 0.4, it is advantageous to the forward extrusion forming of the electrode work nose part, while the friction factor of the male die is only 0.1, it would be benefit to the backward extrusion forming of the electrode fit-up hole part. Addition of a scoop channel with 1.5 mm in depth and 4 mm in diameter at the bottom of the female die can avoid folds at the work nose. The rise in temperature is about 60 ℃ during the forming process.