期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Temperature Dependence of Electrical Properties of Organic Thin Film Transistors Based on pn Heterojuction and Their Applications in Temperature Sensors
1
作者 Rongbin Ye Koji Ohta Mamoru Baba 《Journal of Computer and Communications》 2016年第5期10-15,共6页
Organic thin film transistors based on an F<sub>16</sub>CuPc/α6T pn heterojunction have been fabricated and analyzed to investigate the temperature dependence of electrical properties and apply in tempera... Organic thin film transistors based on an F<sub>16</sub>CuPc/α6T pn heterojunction have been fabricated and analyzed to investigate the temperature dependence of electrical properties and apply in temperature sensors. The mobility follows a thermally activated hopping process. At temperatures over 200 K, the value of thermal activation energy (E<sub>A</sub>) is 40. 1 meV, similar to that of the single-layer device. At temperatures ranging from 100 to 200 K, we have a second regime with a much lower E<sub>A</sub> of 16.3 meV, where the charge transport is dominated by shallow traps. Similarly, at temperatures above 200 K, threshold voltage (V<sub>T</sub>) increases linearly with decreasing temperature, and the variations of V<sub>T</sub> of 0.185 V/K is larger than the variation of V<sub>T</sub> (~0.020 V/K) in the single layer devices. This result is due to the interface dipolar charges. At temperatures ranging from 100 K to 200 K, we have a second regime with much lower variations of 0.090 V/K. By studying gate voltage (V<sub>G</sub>)-dependence temperature variation factor (k), the maximum value of k (~0.11 dec/K) could be obtained at V<sub>G</sub> = 5 V. Furthermore, the pn heterojunction device could be characterized as a temperature sensor well working at low operating voltages. 展开更多
关键词 Organic Thin Film Transistors pn Heterojunction Temperature Dependence Temperature Sensors
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部