期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Maximizing the Absorbed Power of A Point Absorber Using An FA-Based Optimized Model Predictive Control
1
作者 Negar RAHIMI Reihaneh Kardehi MOGHADDAM 《China Ocean Engineering》 SCIE EI CSCD 2018年第6期696-705,共10页
This paper presents an extended model predictive controller for maximizing the absorbed power of a point absorber wave energy converter. Owing to the great influence of controller parameters upon the absorbed power, t... This paper presents an extended model predictive controller for maximizing the absorbed power of a point absorber wave energy converter. Owing to the great influence of controller parameters upon the absorbed power, the optimization of these parameters is carried out for the first time by a firefly algorithm(FA). Error, the difference between output velocity of buoy and input wave speed which leads to power maximization in the optimized MPC is compared with the classical MPC. Simulation results indicate that given the high accuracy and acceptable speed of the algorithm, it can adjust the parameters of the controller to the point where system error decreased effectively and the absorbed energy increased about 4 MW. 展开更多
关键词 wave energy point absorber predictive controller firefly algorithm
下载PDF
Evaluation of the Double Snap-Through Mechanism on the Wave Energy Converter’s Performance 被引量:3
2
作者 Bingqi Liu Carlos Levi +2 位作者 Segen F.Estefen Zhijia Wu Menglan Duan 《Journal of Marine Science and Application》 CSCD 2021年第2期268-283,共16页
Lower efficiencies induce higher energy costs and pose a barrier to wave energy devices'commercial applications.Therefore,the efficiency enhancement of wave energy converters has received much attention in recent ... Lower efficiencies induce higher energy costs and pose a barrier to wave energy devices'commercial applications.Therefore,the efficiency enhancement of wave energy converters has received much attention in recent decades.The reported research presents the double snap-through mechanism applied to a hemispheric point absorber type wave energy converter(WEC)to improve the energy absorption perfomance.The double snap-through mechanism comprises four oblique springs mounted in an X-configuration.This provides the WEC with different dynamic stability behaviors depending on the particular geometric and physical parameters employed.The efficiency of these different WEC behaviors(linear,bistable,and tristable)was initially evaluated under the action of regular waves.The results for bistable or tristable responses indicated significant improvements in the WEC's energy capture efficiency.Furthermore,the WEC frequency bandwidth was shown to be significantly enlarged when the tristable mode was in operation.However,the corresponding tristable trajectory showed intra-well behavior in the middle potential well,which induced a more severe low-energy absorption when a small wave amplitude acted on the WEC compared to when the bistable WEC was employed.Nevertheless,positive effects were observed when appropriate initial conditions were imposed.The results also showed that for bistable or tristable responses,a suitable spring stiffness may cause the buoy to oscillate in high energy modes. 展开更多
关键词 Wave energy converter point absorber Double snap-through mechanism Bistable dynamic behavior Tristable dynamic behavior
下载PDF
Application of the Latching Control System on the Power Performance of a Wave Energy Converter Characterized by Gearbox,Flywheel,and Electrical GeneratorGustavor
3
作者 Gustavo O.Guarniz Avalos Milad Shadman Segen F.Estefen 《Journal of Marine Science and Application》 CSCD 2021年第4期767-786,共20页
The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the ... The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the amplitude of motion of the floating body is not the only challenge to obtain a good performance of the WEC.It also depends on the efficiency of the power take-off system(PTO).This study aims to address the actual power performance and operation of a heaving point absorber with a direct mechanical drive PTO system controlled by latching.The PTO characteristics,such as the gear ratio,the flywheel inertia,and the electric generator,are analyzed in the WEC performance.Three cylindrical point absorbers are also considered in the present study.A wave-to-wire model is developed to simulate the coupled hydro-electro-mechanical system in regular waves.The wave energy converter(WEC)performance is analyzed using the potential linear theory but considering the viscous damping effect according to the Morison equation to avoid the overestimated responses of the linear theory near resonance when the latching control system is applied.The latching control system increases the mean power.However,the increase is not significant if the parameters that characterize the WEC provide a considerable mean power.The performance of the proposed mechanical power take-off depends on the gear ratio and flywheel.However,the gear ratio shows a more significant influence than the flywheel inertia.The operating range of the generator and the diameter/draft ratio of the buoy also influence the PTO performance. 展开更多
关键词 Wave energy converter point absorber Mechanical power take-off FLYWHEEL Gear ratio Latching control
下载PDF
Parametric study on power capture performance of an adaptive bistable point absorber wave energy converter in irregular waves
4
作者 Yang Li Xiantao Zhang Longfei Xiao 《Journal of Ocean Engineering and Science》 SCIE 2022年第4期383-398,共16页
The power capture performance of an adaptive bistable point absorber wave energy converter(WEC)in irregular waves is investigated in this paper.Based on the linear potential flow theory and Cummins equations,the equat... The power capture performance of an adaptive bistable point absorber wave energy converter(WEC)in irregular waves is investigated in this paper.Based on the linear potential flow theory and Cummins equations,the equation of motion for the WEC is established in time domain.Then a parametric study is performed on the power capture performance of the WEC by considering the influences of different wave and system parameters such as the spring combination parameter,the stiffness of auxiliary springs and main springs,the original length value of the main spring,damping coefficient of the PTO systems and the significant wave height.The results show that in an irregular wave,each parameter will have a certain impact on the performance of the device.Appropriate device parameters need to be selected according to actual environmental parameters to ensure that the adaptive bistable WEC has better power capture performance than its linear and conventional bistable counterparts. 展开更多
关键词 Adaptive bistable point absorber Power capture Parametric study
原文传递
A comparison of two wave energy converters’power performance and mooring fatigue characteristics-One WEC vs many WECs in a wave park with interaction effects
5
作者 Xinyuan Shao Jonas W.Ringsberg +3 位作者 Hua-Dong Yao Zhiyuan Li Erland Johnson Göran Fredriksson 《Journal of Ocean Engineering and Science》 SCIE 2023年第4期446-460,共15页
The production of renewable energy is key to satisfying the increasing demand for energy without further increasing pollution.Harnessing ocean energy from waves has attracted attention due to its high energy density.T... The production of renewable energy is key to satisfying the increasing demand for energy without further increasing pollution.Harnessing ocean energy from waves has attracted attention due to its high energy density.This study compares two generations of floating heaving point absorber WEC,WaveEL 3.0 and WaveEL 4.0,regarding their power performance and mooring line fatigue characteristics,which are essen-tial in,e.g.,LCoE calculations.The main differences between the two WECs are the principal dimensions and minor differences in their geometries.The DNV software SESAM was used for simulations and anal-yses of these WECs in terms of buoy heave motion resonances for maximising energy harvesting,motion characteristics,mooring line forces,fatigue of mooring lines,and hydrodynamic power production.The first part of the study presents results from simulations of unit WEC in the frequency domain and in the time domain for regular wave and irregular sea state conditions.A verification of the two WECs’motion responses and axial mooring line forces is made against measurement data from a full-scale installation.In the second part of the study,the influence of interaction effects is investigated when the WECs are installed in wave parks.The wave park simulations used a fully-coupled non-linear method in SESAM that calculates the motions of the WECs and the mooring line forces simultaneously in the time domain.The amount of fatigue damage accumulated in the mooring lines was calculated using a relative tension-based fatigue analysis method and the rainflow counting method.Several factors that influence the power performance of the wave park and the accumulated fatigue damage of the mooring lines,for example,the WEC distance of the wave park,the sea state conditions,and the direction of incoming waves,are simulated and discussed.The study’s main conclusion is that WaveEL 4.0,which has a longer tube than WaveEL 3.0,absorbs more hydrodynamic energy due to larger heave motions and more efficient power production.At the same time,the accumulated fatigue damage in the moorings is lower compared to WaveEL 3.0 if the distance between the WECs in the wave park is not too short.Its motions in the hor-izontal plane are larger,which may require a larger distance between the WEC units in a wave park to avoid losing efficiency due to hydrodynamic interaction effects. 展开更多
关键词 Heaving point absorber Interaction effects Mooring fatigue Power performance analysis Wave energy
原文传递
Performance analysis of a tuned point absorber using SPH calm water and wave tank simulations
6
作者 Kaveh Soleimani Mohammad Javad Ketabdari 《Journal of Ocean Engineering and Science》 SCIE 2024年第5期409-436,共28页
In this paper,two smoothed particle hydrodynamics(SPH)models,namely SPH-W and SPH-C were used to evaluate the motion response of a point absorber wave energy converter(WEC).In the SPH-W model,a long wave flume was con... In this paper,two smoothed particle hydrodynamics(SPH)models,namely SPH-W and SPH-C were used to evaluate the motion response of a point absorber wave energy converter(WEC).In the SPH-W model,a long wave flume was constructed and a long simulation was performed to obtain the motion response of the WEC.In the SPH-C model,the SPH method is only used to find the hydrodynamic coefficients of the device by analysing a few seconds of free-decaying motion of WEC in calm water in a much smaller numerical flume.Then,these coefficients were inserted in the equation of motion of a heaving WEC that was solved using a 4th order Runge-Kutta(ODE45)solver in MATLAB.First,the energy conservation property of the WCSPH model was examined through a standing wave benchmark test.Then,the wavepoint absorber interaction was simulated.While the simulation time for SPH-C model is much smaller than that of SPH-W,it gave almost similar results for the motion response of WEC.These two models were used to evaluate the effects of the control force and the draft of a cone-cylinder point absorber on its hydrodynamic responses.The results showed that compared to the effect of the supplementary inertia,changes in the draft of the WEC have a small influence on its hydrodynamic responses.The buoy draft has an inverse relationship with both added mass and damping coefficients.However,increasing the supplementary mass increases the added mass and decreases the hydrodynamic damping coefficients. 展开更多
关键词 point absorber Power take-off Control forces SPH wave tank test SPH calm water test DualSPHysics
原文传递
Experimental investigation and ANN modeling on improved performance of an innovative method of using heave response of a non-floating object for ocean wave energy conversion 被引量:2
7
作者 Srinivasan CHANDRASEKARAN Arunachalam AMARKARTHIK +2 位作者 Karuppan SIVAKUMAR Dhanasekaran SELVAMUTHUKUMARAN Shaji SIDNEY 《Frontiers in Energy》 SCIE CSCD 2013年第3期279-287,共9页
To convert wave energy into usable forms of energy by utilizing heaving body, heaving bodies (buoys) which are buoyant in nature and float on the water surface are usually used. The wave exerts excess buoyancy force... To convert wave energy into usable forms of energy by utilizing heaving body, heaving bodies (buoys) which are buoyant in nature and float on the water surface are usually used. The wave exerts excess buoyancy force on the buoy, lifting it during the approach of wave crest while the gravity pulls it down during the wave trough. A hydraulic, direct or mechanical power takeoff is used to convert this up and down motion of the buoy to produce usable forms of energy. Though using a floating buoy for harnessing wave energy is conventional, this device faces many challenges in improving the overall conversion efficiency and survivability in extreme conditions. Up to the present, no studies have been done to harness ocean waves using a non-floating object and to find out the merits and demerits of the system. In the present paper, an innovative heaving body type of wave energy converter with a non-floating object was proposed to harness waves. It was also shown that the conversion efficiency and safety of the proposed device were significantly higher than any other device proposed with floating buoy. To demonstrate the improvements, experiments were conducted with non- floating body for different dimensions and the heave response was noted. Power generation was not considered in the experiment to observe the worst case response of the heaving body. The device was modeled in artificial neural network (ANN), the heave response for various parameters were predicted, and compared with the experimental results. It was found that the ANN model could predict the heave response with an accuracy of 99%. 展开更多
关键词 ocean wave energy point absorbers heaving body non-floating object heave response ratio artificial neural network (ANN)
原文传递
Laboratory experiment on using non-floating body to generate electrical energy from water waves 被引量:2
8
作者 Arunachalam AMARKARTHIK Srinivasan CHANDRASEKARAN +1 位作者 Karuppan SIVAKUMAR HarenderSINHMAR 《Frontiers in Energy》 CSCD 2012年第4期361-365,共5页
This paper describes an innovative method of using a nonbuoyant body to harness ocean waves. All the point absorbers are buoyant in nature and move up due to buoyancy and come down because of gravity. The point absorb... This paper describes an innovative method of using a nonbuoyant body to harness ocean waves. All the point absorbers are buoyant in nature and move up due to buoyancy and come down because of gravity. The point absorbers are designed to move along the waves to make the device efficient. These devices face excessive stress during the rough weather on account of the extreme motion of waves and cause the total device failure. The present study shows that using a nonbuoyant body for conven tional point absorber principle is much efficient and safer than any other device proposed till today. A small scale wave energy converter with nonbuoyant body was designed, fabricated and tested in small scale wave maker. An electrical generator was coupled with the device to generate electrical energy from harnessed waves. The generator was electrically loaded and the generated power was measured. It was found from the experiments that the proposed device showed a significant improve ment in electricity generation and safety during extreme conditions. In addition to the electricity generation, the characteristics of the device were also studied by using various wave and device parameters. 展开更多
关键词 ocean wave energy point absorbers heavingbody non-floating object heave response ratio electricalenergy generation
原文传递
A review on front end conversion in ocean wave energy converters
9
作者 Nagulan SANTHOSH Venkatesan BASKARAN Arunachalam AMARKARTHIK 《Frontiers in Energy》 SCIE CSCD 2015年第3期297-310,共14页
Harvesting the energy from ocean waves is one of the greatest attractions for energy engineers and scientists. Till date, plenty of methods have been adopted to harvest the energy from the ocean waves. However, due to... Harvesting the energy from ocean waves is one of the greatest attractions for energy engineers and scientists. Till date, plenty of methods have been adopted to harvest the energy from the ocean waves. However, due to technological and economical complexity, it is intricate to involve the majority of these energy harvesters in the real ocean environment. Effective utilization and sustain- ability of any wave energy harvester depend upon its adaptability in the irregular seasonal waves, situation capability in maximum energy extraction and finally fulfilling the economic barriers. In this paper, the front end energy conversions are reviewed in detail which is positioned in the first stage of the wave energy converter among other stages such as power take off (PTO) and electrical energy conversion. If the recent development of these front end energy conversion is well known then developing wave energy converter with economic and commercial viability is possible. The aim of this review is to provide information on front end energy conversion of a point absorber and emphasize the strategies and calamity to be considered in designing such kinds of devices to improve the energy harvesting competence. This will be useful to the engineers for speeding up the development of a matured point absorbing type wave energy converter. 展开更多
关键词 wave energy converter point absorbers power take off (PTO) front end energy conversion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部