期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Development of vehicle-recognition method on water surfaces using LiDAR data:SPD^(2)(spherically stratified point projection with diameter and distance)
1
作者 Eon-ho Lee Hyeon Jun Jeon +2 位作者 Jinwoo Choi Hyun-Taek Choi Sejin Lee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期95-104,共10页
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ... Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework. 展开更多
关键词 Object classification Clustering 3D point cloud data LiDAR(light detection and ranging) Surface vehicle
下载PDF
Methodology for Extraction of Tunnel Cross-Sections Using Dense Point Cloud Data 被引量:2
2
作者 Yueqian SHEN Jinguo WANG +2 位作者 Jinhu WANG Wei DUAN Vagner G.FERREIRA 《Journal of Geodesy and Geoinformation Science》 2021年第2期56-71,共16页
Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minute... Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications. 展开更多
关键词 CROSS-SECTION control point convergence analysis z-score method terrestrial laser scanning dense point cloud data
下载PDF
Accuracy of common stem volume formulae using terrestrial photogrammetric point clouds:a case study with savanna trees in Benin
3
作者 Hospice A.Akpo Gilbert Atindogbe +3 位作者 Maxwell C.Obiakara Arios B.Adjinanoukon Madai Gbedolo Noel H.Fonton 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2415-2422,共8页
Recent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique.However,in tropical regions little research has been done on the accuracy of this approach for s... Recent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique.However,in tropical regions little research has been done on the accuracy of this approach for stem volume calculation.In this study,the performance of Structure from Motion photogrammetry for estimating individual tree stem volume in relation to traditional approaches was evaluated.We selected 30 trees from five savanna species growing at the periphery of the W National Park in northern Benin and measured their circumferences at different heights using traditional tape and clinometer.Stem volumes of sample trees were estimated from the measured circumferences using nine volumetric formulae for solids of revolution,including cylinder,cone,paraboloid,neiloid and their respective fustrums.Each tree was photographed and stem volume determined using a taper function derived from tri-dimensional stem models.This reference volume was compared with the results of formulaic estimations.Tree stem profiles were further decomposed into different portions,approximately corresponding to the stump,butt logs and logs,and the suitability of each solid of revolution was assessed for simulating the resulting shapes.Stem volumes calculated using the fustrums of paraboloid and neiloid formulae were the closest to reference volumes with a bias and root mean square error of 8.0%and 24.4%,respectively.Stems closely resembled fustrums of a paraboloid and a neiloid.Individual stem portions assumed different solids as follows:fustrums of paraboloid and neiloid were more prevalent from the stump to breast height,while a paraboloid closely matched stem shapes beyond this point.Therefore,a more accurate stem volumetric estimate was attained when stems were considered as a composite of at least three geometric solids. 展开更多
关键词 Structure from motion photogrammetry point cloud data Stem volume Savanna species BENIN
下载PDF
Indoor Space Modeling and Parametric Component Construction Based on 3D Laser Point Cloud Data
4
作者 Ruzhe Wang Xin Li Xin Meng 《Journal of World Architecture》 2023年第5期37-45,共9页
In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit so... In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference. 展开更多
关键词 3D laser scanning technology Indoor space point cloud data Building information modeling(BIM)
下载PDF
Multi-view ladar data registration in obscure environment
5
作者 Mingbo Zhao Jun He +1 位作者 Wei Qiu Qiang Fu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期606-616,共11页
Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in dif... Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in different views because of the occluder, so the multi-view data registration is rather difficult. Through indepth analyses of the typical methods and problems, it is obtained that the sequence registration is more appropriate, but needs to improve the registration accuracy. On this basis, a multi-view data registration algorithm based on aggregating the adjacent frames, which are already registered, is proposed. It increases the overlap region between the pending registration frames by aggregation and further improves the registration accuracy. The experiment results show that the proposed algorithm can effectively register the multi-view ladar data in the obscure environment, and it also has a greater robustness and a higher registration accuracy compared with the sequence registration under the condition of equivalent operating efficiency. 展开更多
关键词 laser radar (ladar) multi-view data registration iterative closest point obscured target point cloud data.
下载PDF
Application Strategies of Spatial Refinement Design in Ancient Cities Supported by Digital Te-Zhaoyu Ancient City in Qixian County as an Example
6
作者 BAI Zhao-yi FANG Yu-xin WEN Jia-hao 《Journal of Literature and Art Studies》 2024年第6期474-490,共17页
Digital technology provides a method of quantitative investigation and data analysis for contemporary landscape spatial analysis,and related research is moving from image recognition to digital algorithmic analysis,pr... Digital technology provides a method of quantitative investigation and data analysis for contemporary landscape spatial analysis,and related research is moving from image recognition to digital algorithmic analysis,providing a more scientific and macroscopic way of research.The key to refinement design is to refine the spatial design process and the spatial improvement strategy system.Taking the ancient city of Zhaoyu in Qixian County,Shanxi Province as an example,(1)based on obtaining the integrated data of the ancient city through the drone tilt photography,the style and landscape of the ancient city are modeled;(2)the point cloud data with spatial information is imported into the point cloud analysis platform and the data analysis is carried out from the overall macroscopic style of the ancient city to the refinement level,which results in the formation of a more intuitive landscape design scheme,thus improving the precision and practicability of the landscape design;(3)Based on spatial big data,it starts from the spatial aggregation level,spatial distribution characteristics and other evaluation index system to achieve the refinement analysis of the site.Digital technology and methods are used throughout the process to explore the refined design path. 展开更多
关键词 digital technology Zhaoyu Ancient City tilt photography point cloud data
下载PDF
Integration system research and development for three-dimensional laser scanning information visualization in goaf 被引量:1
7
作者 罗周全 黄俊杰 +2 位作者 罗贞焱 汪伟 秦亚光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1985-1994,共10页
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo... An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable. 展开更多
关键词 GOAF laser scanning visualization integration system 1 Introduction The goaf formed through underground mining of mineral resources is one of the main disaster sources threatening mine safety production [1 2]. Effective implementation of goaf detection and accurate acquisition of its spatial characteristics including the three-dimensional morphology the spatial position as well as the actual boundary and volume are important basis to analyze predict and control disasters caused by goaf. In recent years three-dimensional laser scanning technology has been effectively applied in goaf detection [3 4]. Large quantities of point cloud data that are acquired for goaf by means of the three-dimensional laser scanning system are processed relying on relevant engineering software to generate a three-dimensional model for goaf. Then a general modeling analysis and processing instrument are introduced to perform subsequent three-dimensional analysis and calculation [5 6]. Moreover related development is also carried out in fields such as three-dimensional detection and visualization of hazardous goaf detection and analysis of unstable failures in goaf extraction boundary acquisition in stope visualized computation of damage index aided design for pillar recovery and three-dimensional detection
下载PDF
Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data 被引量:9
8
作者 邸凯昌 岳宗玉 +1 位作者 刘召芹 王树良 《Journal of Earth Science》 SCIE CAS CSCD 2013年第1期125-135,共11页
A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken b... A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies. 展开更多
关键词 Mars rover rock extraction rover image 3D point cloud data.
原文传递
Classification of rice seed variety using point cloud data combined with deep learning 被引量:3
9
作者 Yan Qian Qianjin Xu +4 位作者 Yingying Yang Hu Lu Hua Li Xuebin Feng Wenqing Yin 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第5期206-212,共7页
Rice variety selection and quality inspection are key links in rice planting.Compared with two-dimensional images,three-dimensional information on rice seeds shows the appearance characteristics of rice seeds more com... Rice variety selection and quality inspection are key links in rice planting.Compared with two-dimensional images,three-dimensional information on rice seeds shows the appearance characteristics of rice seeds more comprehensively and accurately.This study proposed a rice variety classification method using three-dimensional point cloud data of the surface of rice seeds combined with a deep learning network to achieve the rapid and accurate identification of rice varieties.First,a point cloud collection platform was set up with a Raytrix light field camera as the core to collect three-dimensional point cloud data on the surface of rice seeds;then,the collected point cloud was filled,filtered and smoothed;after that,the point cloud segmentation is based on the RANSAC algorithm,and the point cloud downsampling is based on a combination of random sampling algorithm and voxel grid filtering algorithm.Finally,the processed point cloud was input to the improved PointNet network for feature extraction and species classification.The improved PointNet network added a cross-level feature connection structure,made full use of features at different levels,and better extracted the surface structure features of rice seeds.After testing,the improved PointNet model had an average classification accuracy of 89.4%for eight varieties of rice,which was 1.2%higher than that of the PointNet model.The method proposed in this study combined deep learning and point cloud data to achieve the efficient classification of rice varieties. 展开更多
关键词 rice seed variety classification point cloud data deep learning light field camera
原文传递
Field estimation of maize plant height at jointing stage using an RGB-D camera 被引量:2
10
作者 Ruicheng Qiu Man Zhang Yong He 《The Crop Journal》 SCIE CSCD 2022年第5期1274-1283,共10页
Plant height can be used for assessing plant vigor and predicting biomass and yield. Manual measurement of plant height is time-consuming and labor-intensive. We describe a method for measuring maize plant height usin... Plant height can be used for assessing plant vigor and predicting biomass and yield. Manual measurement of plant height is time-consuming and labor-intensive. We describe a method for measuring maize plant height using an RGB-D camera that captures a color image and depth information of plants under field conditions. The color image was first processed to locate its central area using the S component in HSV color space and the Density-Based Spatial Clustering of Applications with Noise algorithm. Testing showed that the central areas of plants could be accurately located. The point cloud data were then clustered and the plant was extracted based on the located central area. The point cloud data were further processed to generate skeletons, whose end points were detected and used to extract the highest points of the central leaves. Finally, the height differences between the ground and the highest points of the central leaves were calculated to determine plant heights. The coefficients of determination for plant heights manually measured and estimated by the proposed approach were all greater than 0.95. The method can effectively extract the plant from overlapping leaves and estimate its plant height. The proposed method may facilitate maize height measurement and monitoring under field conditions. 展开更多
关键词 Maize plant heigh KINECT Maize central area point cloud data Image processing
下载PDF
A new approach to retrieve leaf normal distribution using terrestrial laser scanners 被引量:1
11
作者 Shengye Jin Masayuki Tamura Junichi Susaki 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第3期631-638,共8页
Leaf normal distribution is an important structural characteristic of the forest canopy. Although terrestrial laser scanners(TLS) have potential for estimating canopy structural parameters, distinguishing between le... Leaf normal distribution is an important structural characteristic of the forest canopy. Although terrestrial laser scanners(TLS) have potential for estimating canopy structural parameters, distinguishing between leaves and nonphotosynthetic structures to retrieve the leaf normal has been challenging. We used here an approach to accurately retrieve the leaf normals of camphorwood(Cinnamomum camphora) using TLS point cloud data.First, nonphotosynthetic structures were filtered by using the curvature threshold of each point. Then, the point cloud data were segmented by a voxel method and clustered by a Gaussian mixture model in each voxel. Finally, the normal vector of each cluster was computed by principal component analysis to obtain the leaf normal distribution. We collected leaf inclination angles and estimated the distribution, which we compared with the retrieved leaf normal distribution. The correlation coefficient between measurements and obtained results was 0.96, indicating a good coincidence. 展开更多
关键词 Leaf normal distribution Leaf inclinationangle Terrestrial laser scanner point cloud data Curvature - Clustering
下载PDF
Classified denoising method for laser point cloud data of stored grain bulk surface based on discrete wavelet threshold 被引量:1
12
作者 Shao Qing Xu Tao +2 位作者 Yoshino Tatsuo Song Nan Zhu Hang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第4期123-131,共9页
Surfaces of stored grain bulk are often reconstructed from organized point sets with noise by 3-D laser scanner in an online measuring system.As a result,denoising is an essential procedure in processing point cloud d... Surfaces of stored grain bulk are often reconstructed from organized point sets with noise by 3-D laser scanner in an online measuring system.As a result,denoising is an essential procedure in processing point cloud data for more accurate surface reconstruction and grain volume calculation.A classified denoising method was presented in this research for noise removal from point cloud data of the grain bulk surface.Based on the distribution characteristics of cloud point data,the noisy points were divided into three types:The first and second types of the noisy points were either sparse points or small point cloud data deviating and suspending from the main point cloud data,which could be deleted directly by a grid method;the third type of the noisy points was mixed with the main body of point cloud data,which were most difficult to distinguish.The point cloud data with those noisy points were projected into a horizontal plane.An image denoising method,discrete wavelet threshold(DWT)method,was applied to delete the third type of the noisy points.Three kinds of denoising methods including average filtering method,median filtering method and DWT method were applied respectively and compared for denoising the point cloud data.Experimental results show that the proposed method remains the most of the details and obtains the lowest average value of RMSE(Root Mean Square Error,0.219)as well as the lowest relative error of grain volume(0.086%)compared with the other two methods.Furthermore,the proposed denoising method could not only achieve the aim of removing noisy points,but also improve self-adaptive ability according to the characteristics of point cloud data of grain bulk surface.The results from this research also indicate that the proposed method is effective for denoising noisy points and provides more accurate data for calculating grain volume. 展开更多
关键词 point cloud data DENOISING grid method discrete wavelet threshold(DWT)method 3-D laser scanning stored grain
原文传递
FasFast Triangulation and Local Optimization for Scan Data of Laser Radar
13
作者 石路 杜正春 +1 位作者 姚振强 洪迈生 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第1期1-5,共5页
In order to study the triangulation for the point cloud data collected by three-dimensional laser radar,in accordance with the line-by-line characteristics of laser radar scanning,an improved Delaunay triangulation me... In order to study the triangulation for the point cloud data collected by three-dimensional laser radar,in accordance with the line-by-line characteristics of laser radar scanning,an improved Delaunay triangulation method is proposed to mesh the point cloud data as a triangulation irregular network.Based on the geometric topology location information among radar point cloud data,focusing on the position relationship between adjacent scanning line of the point data,a preliminary match network is obtained according to their geometric relationship.A reasonable triangulation network for the object surface is acquired after the use of local optimization on initial mesh by Delaunay rule.Meanwhile,a new judging rule is proposed to contrast the triangulation before and after the optimization on the network.The result shows that triangulation for point cloud with full use of its own characteristics can improve the speed of the algorithm obviously,and the rule for judging the triangulation can evaluate the quality of network. 展开更多
关键词 TRIANGULATION local optimization point cloud data laser radar
原文传递
Progress and perspectives of point cloud intelligence
14
作者 Bisheng Yang Nobert Haala Zhen Dong 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第2期189-205,共17页
With the rapid development of reality capture methods,such as laser scanning and oblique photogrammetry,point cloud data have become the third most important data source,after vector maps and imagery.Point cloud data ... With the rapid development of reality capture methods,such as laser scanning and oblique photogrammetry,point cloud data have become the third most important data source,after vector maps and imagery.Point cloud data also play an increasingly important role in scientific research and engineering in the fields of Earth science,spatial cognition,and smart cities.However,how to acquire high-quality three-dimensional(3D)geospatial information from point clouds has become a scientific frontier,for which there is an urgent demand in the fields of surveying and mapping,as well as geoscience applications.To address the challenges mentioned above,point cloud intelligence came into being.This paper summarizes the state-of-the-art of point cloud intelligence,with regard to acquisition equipment,intelligent processing,scientific research,and engineering applications.For this purpose,we refer to a recent project on the hybrid georeferencing of images and LiDAR data for high-quality point cloud collection,as well as a current benchmark for the semantic segmentation of high-resolution 3D point clouds.These projects were conducted at the Institute for Photogrammetry,the University of Stuttgart,which was initially headed by the late Prof.Ackermann.Finally,the development prospects of point cloud intelligence are summarized. 展开更多
关键词 point cloud big data point cloud intelligence semantic labeling structured modeling machine learning
原文传递
Research on concrete structure defect repair based on three-dimensional printing
15
作者 Yang GU Wei LI +1 位作者 Xupeng YAO Guangjun LIU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第5期731-742,共12页
Quality assurance and maintenance play a crucial role in engineering construction,as they have a significant impact on project safety.One common issue in concrete structures is the presence of defects.To enhance the a... Quality assurance and maintenance play a crucial role in engineering construction,as they have a significant impact on project safety.One common issue in concrete structures is the presence of defects.To enhance the automation level of concrete defect repairs,this study proposes a computer vision-based robotic system,which is based on three-dimensional(3D)printing technology to repair defects.This system integrates multiple sensors such as light detection and ranging(LiDAR)and camera.LiDAR is utilized to model concrete pipelines and obtain geometric parameters regarding their appearance.Additionally,a convolutional neural network(CNN)is employed with a depth camera to locate defects in concrete structures.Furthermore,a method for coordinate transformation is presented to convert the obtained coordinates into executable ones for a robotic arm.Finally,the feasibility of this concrete defect repair method is validated through simulation and experiments. 展开更多
关键词 CONCRETE defect detection 3D printing deep learning point cloud data
原文传递
An Approximating Algorithm on Reconstruction of Complicated Curved Surface
16
作者 钟山 卢雪燕 《Tsinghua Science and Technology》 SCIE EI CAS 2009年第S1期89-93,共5页
An approximating algorithm on handling 3-D points cloud data was discussed for reconstruction of complicated curved surface. In this algorithm, the coordinate information of nodes both in internal and external regions... An approximating algorithm on handling 3-D points cloud data was discussed for reconstruction of complicated curved surface. In this algorithm, the coordinate information of nodes both in internal and external regions of partition interpolation was used to realize minimized least squares approximation error of surface fitting. The changes between internal and external interpolation regions are continuous and smooth. Meanwhile, surface shape has properties of local controllability, variation reduction, and convex hull. The practical example shows that this algorithm possesses a higher accuracy of curved surface reconstruction and also improves the distortion of curved surface reconstruction when typical approximating algorithms and unstable operation are used. 展开更多
关键词 points cloud data reconstruction of curved surface approximating algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部