In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by co...In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by convex hull, triangulated irregular network (TIN), Voronoi diagram, etc.;second, we manually assign decisional attributes to the information table according to conditional attributes. In doing so, the spatial information and attribute information are integrated together to evaluate the importance of points and rivers by rough sets theory. Finally, we select the point cluster and the river network in a progressive manner. The experimental results show that our method is valid and effective. In comparison with previous work, our method has the advantage to adaptively consider the spatial and attribute information at the same time without any a priori knowledge.展开更多
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow con...Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.展开更多
井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述...井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。展开更多
针对外卖配送电动自行车换电柜布局不合理带来的部分换电柜利用率低与部分换电需求得不到及时满足的供需矛盾问题,本文通过聚类POI(Point of Interest)数据确定外卖配送起止点,并通过仿真模拟外卖骑手配送路径预测外卖配送电动自行车换...针对外卖配送电动自行车换电柜布局不合理带来的部分换电柜利用率低与部分换电需求得不到及时满足的供需矛盾问题,本文通过聚类POI(Point of Interest)数据确定外卖配送起止点,并通过仿真模拟外卖骑手配送路径预测外卖配送电动自行车换电需求时空分布,构建换电柜运营商总成本最低和用户满意度最高的多目标换电柜选址定容模型,并以新乡市主城区为例,采用NSGA-II(Non-dominated Sorting Genetic Algorithm II)算法得到换电柜选址定容方案。研究结果表明:仿真模拟得出的换电需求时间分布预测值与实际值基本吻合,换电需求在11:00,14:00,17:00和20:00左右急剧增长,且11:00和14:00左右的换电需求量显著高于17:00和20:00左右的换电需求量,外卖骑手配送路径仿真模拟方法在换电需求预测上具有较高的预测精度;换电柜选址方案不能同时满足运营商和用户利益均为最优,用户满意度的提高需以增加运营商总成本为代价;同时,兼顾运营商和用户利益的新乡市主城区外卖配送电动自行车换电柜最佳建设数量为26,其中,容量为11的换电柜11个,容量为22的换电柜8个,容量为33的换电柜7个;新乡市主城区应按照备选点编号15-7-19-17依次新增换电柜至30个,此时,用户满意度最大,若继续增加换电柜建设数量,只会增加运营商总成本。展开更多
针对出租车随意停靠造成城市交通拥堵甚至交通事故的问题,利用成都实际区域的出租车GPS(Global Position System)数据和爬取的POI(Point of Interest)数据,使用DBSCAN(Density-Based Spatial Clustering of Application with Noise)聚...针对出租车随意停靠造成城市交通拥堵甚至交通事故的问题,利用成都实际区域的出租车GPS(Global Position System)数据和爬取的POI(Point of Interest)数据,使用DBSCAN(Density-Based Spatial Clustering of Application with Noise)聚类算法对上下客点进行聚类,得到出租车的载客热点,根据POI的类型划定载客热点区域的类型,对出租车不同时间的出行需求进行分析,进而划分出出租车的固定停车区域。研究结果表明,出租车固定停车区域的设定与出行者的出行需求有关,即将固定停车区域设置在出行者出行需求多的区域,可以满足出行者的不同出行需求。结合出租车载客热点和爬取POI数据划定固定停车区域的方法具有较高的实用性,可为城市交通安全方面提供理论和现实意义。展开更多
基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用Focus...基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。展开更多
文摘In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by convex hull, triangulated irregular network (TIN), Voronoi diagram, etc.;second, we manually assign decisional attributes to the information table according to conditional attributes. In doing so, the spatial information and attribute information are integrated together to evaluate the importance of points and rivers by rough sets theory. Finally, we select the point cluster and the river network in a progressive manner. The experimental results show that our method is valid and effective. In comparison with previous work, our method has the advantage to adaptively consider the spatial and attribute information at the same time without any a priori knowledge.
基金Supported by National Natural Science Foundation of China(Grant No.11372036)
文摘Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.
文摘井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。
文摘针对出租车随意停靠造成城市交通拥堵甚至交通事故的问题,利用成都实际区域的出租车GPS(Global Position System)数据和爬取的POI(Point of Interest)数据,使用DBSCAN(Density-Based Spatial Clustering of Application with Noise)聚类算法对上下客点进行聚类,得到出租车的载客热点,根据POI的类型划定载客热点区域的类型,对出租车不同时间的出行需求进行分析,进而划分出出租车的固定停车区域。研究结果表明,出租车固定停车区域的设定与出行者的出行需求有关,即将固定停车区域设置在出行者出行需求多的区域,可以满足出行者的不同出行需求。结合出租车载客热点和爬取POI数据划定固定停车区域的方法具有较高的实用性,可为城市交通安全方面提供理论和现实意义。
文摘基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。
文摘目的 观察头穴丛刺长留针法治疗偏头痛的临床疗效。方法 将88例偏头痛患者随机分为观察组(44例,脱落2例)和对照组(44例,脱落3例)。观察组采用常规针刺联合头穴丛刺长留针法治疗,对照组采用常规针刺方法治疗。比较两组临床疗效,观察两组治疗前后的视觉模拟量表(visual analog scale, VAS)评分、偏头痛特异性生活质量问卷(migraine-specific quality of life questionnaire, MSQ)、血清5-羟色胺(5-hydroxytryptamine, 5-HT)浓度。结果 观察组总有效率为92.9%,高于对照组的78.0%,差异有统计学意义(P>0.05)。两组治疗后VAS评分较治疗前降低(P<0.05),两组随访时VAS评分较治疗前和治疗后降低(P<0.05);观察组治疗后及随访时,VAS评分均低于对照组(P<0.05)。两组治疗后MSQ评分较治疗前升高(P<0.05),两组随访时MSQ评分较治疗前和治疗后升高(P<0.05);观察组治疗后及随访时,MSQ评分均高于对照组(P<0.05)。两组治疗后血清5-HT浓度均升高,且观察组高于对照组,差异有统计学意义(P<0.05)。结论 在常规针刺基础上,头穴丛刺长留针法治疗偏头痛临床疗效优于常规针刺方法,且在减轻偏头痛患者疼痛程度,改善其生活质量及提高5-HT浓度方面优于常规针刺方法。